Azure AI Search Ingestion Automation with ADLS > Using the Azure AI Search Ingestion Automation with ADLS recipe > Step 4. Invoke the process
  

Step 4. Invoke the process

You can invoke the Azure AI Search Ingestion Automation with ADLS process to create an index, data source, skillset, and indexer for the existing files in Amazon Data Lake Storage (ADLS), populate the index with the data, and then return the documents that meet the search criteria.
You can pass input through REST or SOAP API endpoints in any API client such as cURL, Postman, SOAP UI, or through any programming language.
For example:
  1. 1Open the Azure AI search ingestion Automation with ADLS process and click Actions > Properties Details > Copy Service URL.
  2. 2Open Postman.
  3. 3Select the HTTP verb as POST and specify the generated REST service URL and payload as shown in the following image:
  4. The image shows the HTTP verb, REST service URL and the request payload.
    Here is the sample payload:
    {
    "inputIndexName": "reviews",
    "inputApiVersion": "2024-07-01",
    "inputSearchDetails": {
    },
    "inputIndexDetails": {
    "name": "reviews",
    "fields": [
    {
    "name": "id",
    "type": "Edm.String",
    "searchable": true,
    "filterable": true,
    "retrievable": true,
    "stored": true,
    "sortable": true,
    "facetable": true,
    "key": true
    },
    {
    "name": "Location",
    "type": "Edm.String",
    "searchable": true,
    "filterable": true,
    "retrievable": true,
    "stored": true,
    "sortable": true,
    "facetable": true
    },
    {
    "name": "Review",
    "type": "Edm.String",
    "searchable": true,
    "filterable": true,
    "retrievable": true,
    "stored": true,
    "sortable": true,
    "facetable": true
    },
    {
    "name": "Date",
    "type": "Edm.String",
    "searchable": true,
    "filterable": true,
    "retrievable": true,
    "stored": true,
    "sortable": true,
    "facetable": true
    },
    {
    "name": "vectorcontent",
    "type": "Collection(Edm.Single)",
    "searchable": true,
    "filterable": false,
    "retrievable": true,
    "stored": true,
    "sortable": false,
    "facetable": false,
    "key": false,
    "dimensions": 1536,
    "vectorSearchProfile": "vector-profile-1727966526693"
    }
    ],
    "similarity": {
    "@odataType": "#Microsoft.Azure.Search.BM25Similarity"
    },
    "semantic": {
    "configurations": [
    {
    "name": "default",
    "prioritizedFields": {
    "titleField": {
    "fieldName": "Review"
    },
    "prioritizedContentFields": [
    {
    "fieldName": "Review"
    }
    ],
    "prioritizedKeywordsFields": []
    }
    }
    ]
    },
    "vectorSearch": {
    "algorithms": [
    {
    "name": "vector-config-1727966528896",
    "kind": "hnsw",
    "hnswParameters": {
    "metric": "cosine",
    "m": 4,
    "efConstruction": 400,
    "efSearch": 500
    }
    }
    ],
    "profiles": [
    {
    "name": "vector-profile-1727966526693",
    "algorithm": "vector-config-1727966528896",
    "vectorizer": "vectorizer-1727966531637",
    "compression": "vector-1727966521527-compressor"
    }
    ],
    "vectorizers": [
    {
    "name": "vectorizer-1727966531637",
    "kind": "azureOpenAI",
    "azureOpenAIParameters": {
    "resourceUri": "https://chatgptopenaiseas.openai.azure.com",
    "deploymentId": "adavectordb",
    "apiKey": "5df4e4f520ed4e6f810f0eb070a09680",
    "modelName": "text-embedding-ada-002"
    }
    }
    ],
    "compressions": [
    {
    "name": "vector-1727966521527-compressor",
    "kind": "scalarQuantization",
    "rerankWithOriginalVectors": true,
    "defaultOversampling": 4,
    "scalarQuantizationParameters": {
    "quantizedDataType": "int8"
    }
    }
    ]
    }
    },
    "inputDataSourceDetails": {
    "name": "reviews-datasource",
    "description": "review datasource",
    "type": "adlsgen2",
    "credentials": {
    "connectionString": "DefaultEndpointsProtocol=https;AccountName=<Search_Index_Host>;AccountKey=<Account_Key>;EndpointSuffix=core.windows.net"
    },
    "container": {
    "name": "reviews"
    }
    },
    "inputIndexerDetails": {
    "name": "review-indexer",
    "description": "review indexer",
    "dataSourceName": "reviews-datasource",
    "targetIndexName": "reviews",
    "parameters": {
    "configuration": {
    "dataToExtract": "contentAndMetadata",
    "parsingMode": "default"
    }
    }
    }
    }
    For more information about the index, indexer, skillset, and data source, see the Azure documentation.
  5. 4Enter the user account details on the Authorization tab.
  6. 5Click Send.
You can also invoke the process using the Run Using option.