Databricks Connector > SQL ELT with Databricks Connector > Mappings in SQL ELT mode for Databricks
  

Mappings in SQL ELT mode for Databricks

You can create mappings in SQL ELT mode to read data from Databricks, Amazon S3, or Microsoft Azure Data Lake Storage Gen2, load it to Databricks, and perform all of the data transformation within Databricks.
To create a mapping in SQL ELT mode, you create a mapping, and then select Mapping - SQL ELT as the mapping type. You're then prompted to choose Databricks as the cloud ecosystem and a Databricks target connection. If your organization doesn't have any Databricks connections, you're prompted to create one.
After you choose the target connection, the Mapping Designer opens. When you create a mapping, a Source transformation and a Target transformation are already on the canvas for you to configure.

Sources in mappings in SQL ELT mode

When you configure the source connection in the Source transformation, you can choose an Amazon S3 V2, a Databricks, or a Microsoft Azure Data Lake Storage Gen2 connection.

Amazon S3 V2 source properties

You can configure the following properties for an Amazon S3 V2 source:
For information on how to configure the supported properties, see the help for Amazon S3 V2 Connector.

Databricks source properties

You can configure the following properties for a Databricks source:

Microsoft Azure Data Lake Storage Gen2 source properties

You can configure the following properties for a Microsoft Azure Data Lake Storage Gen2 source:
For information on how to configure the supported properties, see the help for Microsoft Azure Data Lake Storage Gen2 Connector.

Targets in mappings in SQL ELT mode

When you configure a Target transformation in a mapping in SQL ELT mode, you need to use only a Databricks connection.
You can configure the following properties in a Databricks target transformation in a mapping in SQL ELT mode:
For information on how the targets in mappings in SQL ELT mode behaves differently from the targets in other types of mappings, see Targets in mappings in SQL ELT mode in Mappings in the Data Integration help.

Transformations in mappings in SQL ELT mode

A mapping in SQL ELT mode includes transformations that Databricks can process.
You can use the following transformations in a mapping in SQL ELT mode:

Functions in mappings in SQL ELT mode

When you create expressions within a mapping in SQL ELT mode, you must use the native functions and expression syntax of Databricks and not Informatica functions and expression syntax.
You can use the following native functions in a mapping in SQL ELT mode:

Aggregate functions

ANY()
FIRST()
REGR_INTERCEPT()
ANY_VALUE()
FIRST_VALUE()
REGR_R2()
APPROX_COUNT_DISTINCT()
HLL_SKETCH_AGG()
REGR_SLOPE()
APPROX_PERCENTILE()
HLL_UNION_AGG()
REGR_SXX()
AVG()
KURTOSIS()
REGR_SXY()
BIT_AND()
LAST()
REGR_SYY()
BIT_OR()
LAST_VALUE()
SKEWNESS()
BIT_XOR()
MAX()
SOME()
BITMAP_CONSTRUCT_AGG()
MAX_BY()
STD()
BITMAP_OR_AGG()
MEAN()
STDDEV()
BOOL_AND()
MEDIAN()
STDDEV_POP()
BOOL_OR()
MIN()
STDDEV_SAMP()
CORR()
MIN_BY()
SUM()
COUNT()
MODE()
TRY_AVG()
COUNT_IF()
PERCENTILE()
TRY_SUM()
COUNT_MIN_SKETCH()
PERCENTILE_APPROX(
VAR_POP()
COVAR_POP()
REGR_AVGX()
VAR_SAMP()
COVAR_SAMP()
REGR_AVGY()
VARIANCE()
EVERY()
REGR_COUNT()
-

AI functions

AI_ANALYZE_SENTIMENT()
AI_GEN()
AI_SUMMARIZE()
AI_FIX_GRAMMAR()
AI_SIMILARITY()
AI_TRANSLATE()

Cast functions

BOOLEAN()
TO_NUMBER()
TRY_TO_NUMBER()
TO_CHAR()
TO_VARCHAR()
-

Date and time functions

ADD_MONTHS()
DAYOFYEAR()
TIMESTAMP()
CURDATE()
FROM_UNIXTIME()
TIMESTAMP_SECONDS()
CURRENT_DATE()
FROM_UTC_TIMESTAMP()
TO_DATE()
CURRENT_TIMESTAMP()
GETDATE()
TO_TIMESTAMP()
CURRENT_TIMEZONE()
HOUR()
TO_UNIX_TIMESTAMP()
DATE_ADD()
LAST_DAY()
TO_UTC_TIMESTAMP()
DATE_FORMAT()
MAKE_DATE()
TRUNC()
DATE_FROM_UNIX_DATE()
MAKE_TIMESTAMP()
TRY_TO_TIMESTAMP()
DATE_PART()
MINUTE()
UNIX_DATE()
DATE()
MONTH()
UNIX_MICROS()
DATE_SUB()
MONTHS_BETWEEN()
UNIX_MILLIS()
DATE_TRUNC()
NEXT_DAY()
UNIX_SECONDS()
DATEADD()
NOW()
UNIX_TIMESTAMP()
DATEDIFF()
QUARTER()
WEEKDAY()
DAY()
SECOND()
WEEKOFYEAR()
DAYOFMONTH()
TIMESTAMP_MICROS()
YEAR()
DAYOFWEEK()
TIMESTAMP_MILLIS()
-

Miscellaneous functions

ASSERT_TRUE()
IFF()
NVL()
COALESCE()
IFNULL()
RAISE_ERROR()
CURRENT_CATALOG()
INPUT_FILE_BLOCK_LENGTH()
REFLECT()
CURRENT_DATABASE()
INPUT_FILE_BLOCK_START()
SECRET()
CURRENT_METASTORE()
INPUT_FILE_NAME()
SESSION_USER()
CURRENT_SCHEMA()
IS_ACCOUNT_GROUP_MEMBER()
SPARK_PARTITION_ID()
CURRENT_USER()
IS_MEMBER()
TRY_REFLECT()
ELT()
ISNOTNULL()
TYPEOF()
EQUAL_NULL()
ISNULL()
USER()
GREATEST()
JAVA_METHOD()
UUID()
HASH()
LEAST()
VERSION()
HLL_SKETCH_ESTIMATE()
LUHN_CHECK()
XXHASH64()
HLL_UNION()
MONOTONICALLY_INCREASING_ID()
-
IF()
NULLIF()
-

Numeric functions

ABS()
DOUBLE()
RAND()
ACOSH()
E()
RANDN()
ACOS()
EXP()
RANDOM()
ASIN()
EXPM1()
RINT()
ASINH()
FACTORIAL()
ROUND()
ATAN()
FLOAT()
SEC()
ATAN2()
FLOOR()
SHIFTLEFT()
ATANH()
GETBIT()
SHIFTRIGHT()
BIGINT()
HYPOT()
SHIFTRIGHTUNSIGNED()
BIT_COUNT()
INT()
SIGN()
BIT_GET()
ISNAN()
SIGNUM()
BIT_REVERSE()
LN()
SIN()
BITMAP_BIT_POSITION()
LOG()
SINH()
BITMAP_BUCKET_NUMBER()
LOG10()
SMALLINT()
BROUND()
LOG1P()
SQRT()
CBRT()
LOG2()
TAN()
CEIL()
MOD()
TANH()
CEILING()
NANVL()
TINYINT()
CONV()
NEGATIVE()
TRY_ADD()
COS()
PI()
TRY_DIVIDE()
COSH()
PMOD()
TRY_MULTIPLY()
COT()
POSITIVE()
TRY_SUBTRACT()
CSC()
POW()
WIDTH_BUCKET()
DECIMAL()
POWER()
-
DEGREES()
RADIANS()
-

String and binary functions

AES_DECRYPT()
INSTR()
RPAD()
AES_ENCRYPT()
LCASE()
RTRIM()
ASCII()
LEFT()
SHA()
BASE64()
LEN()
SHA1()
BIN()
LENGTH()
SHA2()
BINARY()
LEVENSHTEIN()
SOUNDEX()
BIT_LENGTH()
LOCATE()
SPACE()
BITMAP_COUNT()
LOWER()
SPLIT_PART()
BTRIM()
LPAD()
STARTSWITH()
CHAR()
LTRIM()
STRING()
CHAR_LENGTH()
MASK()
SUBSTR()
CHARACTER_LENGTH()
MD5()
SUBSTRING()
CHARINDEX()
OCTET_LENGTH()
SUBSTRING_INDEX()
CHR()
OVERLAY()
TO_BINARY()
CONCAT()
PARSE_URL()
TRANSLATE()
CONCAT_WS()
POSITION()
TRIM()
CONTAINS()
REGEXP_COUNT()
TRY_AES_DECRYPT()
CRC32()
REGEXP_EXTRACT()
TRY_TO_BINARY()
DECODE()
REGEXP_INSTR()
UCASE()
ENCODE()
REGEXP_REPLACE()
UNBASE64()
ENDSWITH()
REGEXP_SUBSTR()
UNHEX()
FIND_IN_SET()
REPEAT()
UPPER()
FORMAT_NUMBER()
REPLACE()
URL_DECODE()
HEX()
REVERSE()
URL_ENCODE()
INITCAP()
RIGHT()
-

Window functions

ANY()
FIRST_VALUE()
REGR_AVGY()
ANY_VALUE()
HLL_SKETCH_AGG()
REGR_COUNT()
APPROX_COUNT_DISTINCT()
HLL_UNION_AGG()
REGR_INTERCEPT()
APPROX_PERCENTILE()
KURTOSIS()
REGR_R2()
AVG()
LAG()
REGR_SLOPE()
BIT_AND()
LAST()
REGR_SXX()
BIT_OR()
LAST_VALUE()
REGR_SXY()
BIT_XOR()
LEAD()
REGR_SYY()
BITMAP_CONSTRUCT_AGG()
MAX()
ROW_NUMBER()
BITMAP_OR_AGG()
MAX_BY()
SKEWNESS()
BOOL_AND()
MEAN()
SOME()
BOOL_OR()
MEDIAN()
STD()
CORR()
MIN()
STDDEV()
COUNT()
MIN_BY()
STDDEV_POP()
COUNT_IF()
MODE()
STDDEV_SAMP()
COUNT_MIN_SKETCH()
NTH_VALUE()
SUM()
COVAR_POP()
NTILE()
TRY_AVG()
COVAR_SAMP()
PERCENT_RANK()
TRY_SUM()
CUME_DIST()
PERCENTILE()
VAR_POP()
DENSE_RANK()
PERCENTILE_APPROX(
VAR_SAMP()
EVERY()
RANK()
VARIANCE()
FIRST()
REGR_AVGX()
-
For more information about the native functions and expression syntax of Databricks, see Databricks functions in Databricks documentation.

Operators in mappings in SQL ELT mode

When you use mappings in SQL ELT mode, Data Integration converts the expression in the transformation by determining equivalent operators in the database.
The table lists the operators that you can push to Databricks:
Operator
Operator
Operator
+
||
<=
-
>
!=
*
<
AND
/
=
OR
%
>=
NOT

Rules and guidelines in mappings in SQL ELT mode

Consider the following rules and guidelines when you run mappings in SQL ELT mode:

Functions