Database Ingestion and Replication > Database Ingestion and Replication > Schema drift handling
  

Schema drift handling

Database Ingestion and Replication can be configured to automatically detect some source schema changes and handle these changes on the target. This process is referred to as schema drift.
Database Ingestion and Replication can detect the following types of source schema changes:
When you define a task, on the Schedule and Runtime Options page of the database ingestion and replication task wizard, you can configure how the supported types of schema changes are handled. For example, you can configure schema drift options to ignore the changes, replicate them, or stop the job or subtask when a schema change occurs. For more information, see Configuring schedule and runtime options. Note that dIfferent types of schema changes might have different default settings, depending on the target type.
Schema drift options are supported for the following source - target combinations and load types:
Source
Load Type
Target
Db2 for i
Incremental
Combined initial and incremental
Amazon Redshift, Amazon S3, Databricks, Google BigQuery, Google Cloud Storage, Kafka (incremental loads only), Microsoft Azure Data Lake Storage, Microsoft Azure Synapse Analytics, Microsoft Fabric OneLake, Oracle, Oracle Cloud Object Storage, PostgreSQL, Snowflake, and SQL Server
Db2 for LUW
Incremental
Combined initial and incremental
Snowflake
Db2 for z/OS, except Db2 11
Incremental
Combined initial and incremental
Amazon Redshift, Amazon S3, Databricks, Google BigQuery, Google Cloud Storage, Kafka (incremental loads only), Microsoft Azure Data Lake Storage, Microsoft Azure Synapse Analytics, Microsoft Fabric OneLake, Oracle, Oracle Cloud Object Storage, Snowflake, and SQL Server
Microsoft SQL Server
Incremental
Combined initial and incremental
Amazon Redshift, Amazon S3, Databricks, Google BigQuery, Google Cloud Storage, Kafka (incremental loads only), Microsoft Azure Data Lake Storage, Microsoft Azure Synapse Analytics, Microsoft Fabric OneLake, Oracle, Oracle Cloud Object Storage, PostgreSQL, Snowflake, and SQL Server
Oracle
Incremental
Combined initial and incremental
Amazon Redshift, Amazon S3, Databricks, Google BigQuery, Google Cloud Storage, Kafka (incremental loads only), Microsoft Azure Data Lake Storage, Microsoft Azure Synapse Analytics, Microsoft Fabric OneLake, Oracle, Oracle Cloud Object Storage, PostgreSQL, Snowflake, and SQL Server
PostgreSQL
Incremental
Combined initial and incremental
Incremental loads: Amazon Redshift, Amazon S3, Databricks, Google BigQuery, Google Cloud Storage, Kafka, Microsoft Azure Data Lake Storage, Microsoft Azure Synapse Analytics, Microsoft Fabric OneLake, Oracle, Oracle Cloud Object Storage, PostgreSQL, and Snowflake
Combined initial and incremental loads: Oracle, PostgreSQL, and Snowflake