Big Data Management User Guide > Native Environment Optimization > Processing Big Data on Partitions
  

Processing Big Data on Partitions

You can run a Model repository mapping with partitioning to increase performance. When you run a mapping configured with partitioning, the Data Integration Service performs the extract, transformation, and load for each partition in parallel.
Mappings that process large data sets can take a long time to process and can cause low data throughput. When you configure partitioning, the Data Integration Service uses additional threads to process the session or mapping which can increase performance.

Partitioned Model Repository Mappings

You can enable the Data Integration Service to use multiple partitions to process Model repository mappings.
If the nodes where mappings run have multiple CPUs, you can enable the Data Integration Service to maximize parallelism when it runs mappings. When you maximize parallelism, the Data Integration Service dynamically divides the underlying data into partitions and processes all of the partitions concurrently.
Optionally, developers can set a maximum parallelism value for a mapping in the Developer tool. By default, the maximum parallelism for each mapping is set to Auto. Each mapping uses the maximum parallelism value defined for the Data Integration Service. Developers can change the maximum parallelism value in the mapping run-time properties to define a maximum value for a particular mapping. When maximum parallelism is set to different integer values for the Data Integration Service and the mapping, the Data Integration Service uses the minimum value.
For more information, see the Informatica Application Services Guide and the Informatica Developer Mapping Guide.

Partition Optimization

You can optimize the partitioning of Model repository mappings to increase performance. You can add more partitions, select the best performing partition types, use more CPUs, and optimize the source or target database for partitioning.
To optimize partitioning, perform the following tasks:
Increase the number of partitions.
When you configure Model repository mappings, you increase the number of partitions when you increase the maximum parallelism value for the Data Integration Service or the mapping.
Increase the number of partitions to enable the Data Integration Service to create multiple connections to sources and process partitions of source data concurrently. Increasing the number of partitions increases the number of threads, which also increases the load on the Data Integration Service nodes. If the Data Integration Service node or nodes contain ample CPU bandwidth, processing rows of data concurrently can increase performance.
Note: If you use a single-node Data Integration Service and the Data Integration Service uses a large number of partitions in a session or mapping that processes large amounts of data, you can overload the system.
Use multiple CPUs.
If you have a symmetric multi-processing (SMP) platform, you can use multiple CPUs to concurrently process partitions of data.
Optimize the source database for partitioning.
You can optimize the source database for partitioning. For example, you can tune the database, enable parallel queries, separate data into different tablespaces, and group sorted data.
Optimize the target database for partitioning.
You can optimize the target database for partitioning. For example, you can enable parallel inserts into the database, separate data into different tablespaces, and increase the maximum number of sessions allowed to the database.