Application Ingestion and Replication > Application Ingestion and Replication > Default data-type mappings
  

Default data-type mappings

This reference provides default data-type mappings for source applications and Amazon Redshift, Databricks, Google BigQuery, Microsoft Azure Synapse Analytics, Oracle, and Snowflake targets. When Application Ingestion and Replication generates the target data, it uses these mappings.
When you configure a target, you can optionally define data-type mapping rules to customize the default mappings of source data types to the target tables. For more information, see the target-specific topics accessed from Task details: Configure how to replicate data to the target.
If a source data type is not listed, Application Ingestion and Replication either cannot extract data from the source columns with this data type or cannot apply the extracted data to any appropriate target data type.

Adobe Analytics Source and Amazon Redshift Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an Adobe Analytics source and an Amazon Redshift target:
Adobe Analytics Source Data Type
Amazon Redshift Target Data Type
currency(p,s), 1 <= p <= 38, 0 <= s <= 19
numeric(p,s), 1 <= p <= 38, 0 <= s <= 19
datetime(3)
timestamp without time zone
decimal(p,s), 1 <= p <= 38, 0 <= s <= 19
numeric(p,s), 1 <= p <= 38, 0 <= s <= 19
enum
binary varying(size), 264004 <= size <= 1020004
enum
character varying(65535)
enum
character varying(size), 4 <= size <= 65535
int(p,s), 1 <= p <= 38, 0 <= s <= 19
numeric(p,s), 1 <= p <= 38, 0 <= s <= 19
ordered-enum
binary varying(size), 264004 <= size <= 1020004
ordered-enum
character varying(65535)
ordered-enum
character varying(size), 4 <= size <= 65535
percent(p,s), 1 <= p <= 38, 0 <= s <= 19
numeric(p,s), 1 <= p <= 38, 0 <= s <= 19
string
binary varying(size), 264004 <= size <= 1020004
string
character varying(65535)
string
character varying(size), 4 <= size <= 65535
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

Adobe Analytics Source and Google BigQuery Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an Adobe Analytics source and a Google BigQuery target:
Adobe Analytics Source Data Type
Google BigQuery Target Data Type
currency(p,s), 1 <= p <= 38, 0 <= s <= 19
bignumeric
datetime(3)
datetime
decimal(p,s), 1 <= p <= 38, 0 <= s <= 19
bignumeric
enum
string
int(p,s), 1 <= p <= 38, 0 <= s <= 19
bignumeric
ordered-enum
string
percent(p,s), 1 <= p <= 38, 0 <= s <= 19
bignumeric
string
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

Adobe Analytics Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an Adobe Analytics source and a Microsoft Azure Synapse Analytics target:
Adobe Analytics Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
currency(p,s), 1 <= p <= 38, 0 <= s <= 19
decimal(p,s), 1 <= p <= 38, 1 <= s <= 19
datetime(3)
datetime
decimal(p,s), 1 <= p <= 38, 0 <= s <= 19
decimal(p,s), 1 <= p <= 38, 1 <= s <= 19
enum
varchar(size), 4 <= size <= max
int(p,s), 1 <= p <= 38, 0 <= s <= 19
decimal(p,s), 1 <= p <= 38, 1 <= s <= 19
ordered-enum
varchar(size), 4 <= size <= max
percent(p,s), 1 <= p <= 38, 0 <= s <= 19
decimal(p,s), 1 <= p <= 38, 1 <= s <= 19
string
varchar(size), 4 <= size <= max
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

Adobe Analytics Source and Oracle Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an Adobe Analytics source and an Oracle target:
Adobe Analytics Source Data Type
Oracle Target Data Type
currency(p,s), 1 <= p <= 38, 0 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
datetime(3)
timestamp(3)
decimal(p,s), 1 <= p <= 38, 0 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
enum
char(s char), 4 <= s <= 2000
enum
clob
int(p,s), 1 <= p <= 38, 0 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
ordered-enum
char(s char), 4 <= size <= 2000
ordered-enum
clob
percent(p,s), 1 <= p <= 38, 0 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
string
char(s char), 4 <= size <= 2000
string
clob
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

Adobe Analytics Source and Snowflake Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an Adobe Analytics source and a Snowflake target:
Adobe Analytics Source Data Type
Snowflake Target Data Type
currency(p,0), 1 <= p <= 38
integer
currency(p,s), 1 <= p <= 38, 1 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
datetime(3)
datetime(3)
decimal(p,0), 1 <= p <= 38
integer
decimal(p,s), 1 <= p <= 38, 1 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
enum
char(size), 4 <= size <= 4192004
int(p,0), 1 <= p <= 38
integer
int(p,s), 1 <= p <= 38, 1 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
ordered-enum
char(size), 4 <= size <= 4192004
percent(p,0), 1 <= p <= 38
integer
percent(p,s), 1 <= p <= 38, 1 <= s <= 19
number(p,s), 1 <= p <= 38, 1 <= s <= 19
string
char(size), 4 <= size <= 16777216
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

Google Analytics Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Google Analytics source and an Amazon Redshift target:
Google Analytics Source Data Type
Amazon Redshift Target Data Type
currency(38,18)
numeric(38,18)
date
date
float
double precision
integer
bigint
percent(38,18)
numeric(38,18)
string
character varying(65535)
time
double precision

Google Analytics Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Google Analytics source and a Databricks target:
Google Analytics Source Data Type
Databricks Target Data Type
currency(38,18)
decimal(38,18)
date
string
float
double
integer
long
percent(38,18)
decimal(38,18)
string
string
time
double

Google Analytics Source and Google BigQuery Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Google Analytics source and a Google BigQuery target:
Google Analytics Source Data Type
Google BigQuery Target Data Type
currency(38,18)
bignumeric
date
date
float
float64
integer
int64
percent(38,18)
bignumeric
string
string
time
float64

Google Analytics Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Google Analytics source and a Microsoft Azure Synapse Analytics target:
Google Analytics Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
currency(38,18)
decimal(38,18)
date
date
float
float
integer
bigint
percent(38,18)
decimal(38,18)
string
nvarchar(max)
time
float

Google Analytics Source and Oracle Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Google Analytics source and an Oracle target:
Google Analytics Source Data Type
Oracle Target Data Type
currency(38,18)
number(38,18)
date
date
float
binary_double
integer
number(19)
percent(38,18)
number(38,18)
string
clob
time
binary_double

Google Analytics Source and Snowflake Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Google Analytics source and a Snowflake target:
Google Analytics Source Data Type
Snowflake Target Data Type
currency(38,18)
numeric(38,18)
date
date
float
double precision
integer
bigint
percent(38,18)
numeric(38,18)
string
character varying(65535)
time
double precision

Marketo Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Marketo source and an Amazon Redshift target:
Marketo Source Data Type
Amazon Redshift Target Data Type
boolean
boolean
currency(38,18)
numeric(38,18)
date
date
datetime
timestamp without time zone
email
character varying(65535)
float
double precision
integer
bigint
long
bigint
percent(38,18)
numeric(38,18)
phone
character varying(65535)
reference
character varying(65535)
score
bigint
string
character varying(65535)
text
character varying(65535)
url
character varying(65535)

Marketo Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Marketo source and a Databricks target:
Marketo Source Data Type
Databricks Target Data Type
boolean
boolean
currency(38,18)
decimal(38,18)
date
string
datetime
timestamp
email
string
float
double
integer
integer
long
long
percent(38,18)
decimal(38,18)
phone
string
reference
string
score
integer
string
string
text
string
url
string

Marketo Source and Google BigQuery Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Marketo source and a Google BigQuery target:
Marketo Source Data Type
Google BigQuery Target Data Type
boolean
bool
currency(38,18)
bignumeric
date
date
datetime
datetime
email
string
float
float64
integer
int64
long
int64
percent(38,18)
bignumeric
phone
string
reference
string
score
int64
string
string
text
string
url
string

Marketo Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Marketo source and a Microsoft Azure Synapse Analytics target:
Marketo Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
boolean
bit
currency(38,18)
decimal(38,18)
date
date
datetime
datetime
email
nvarchar(max)
float
float
integer
bigint
long
bigint
percent(38,18)
decimal(38,18)
phone
nvarchar(max)
reference
nvarchar(max)
score
bigint
string
nvarchar(max)
text
nvarchar(max)
url
nvarchar(max)

Marketo Source and Oracle Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Marketo source and an Oracle target:
Marketo Source Data Type
Oracle Target Data Type
boolean
char(1 char)
currency(38,18)
number(38,18)
date
date
datetime
timestamp(3)
email
clob
float
binary_double
integer
number(10)
long
number(19)
percent(38,18)
number(38,18)
phone
clob
reference
clob
score
number(10)
string
clob
text
clob
url
clob

Marketo Source and Snowflake Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Marketo source and a Snowflake target:
Marketo Source Data Type
Snowflake Target Data Type
boolean
boolean
currency(38,18)
number(38,18)
date
date
datetime
datetime(3)
email
char(16777216)
float
float
integer
integer
long
integer
percent(38,18)
number(38,18)
phone
char(16777216)
reference
char(16777216)
score
integer
string
char(16777216)
text
char(16777216)
url
char(16777216)

Microsoft Dynamics 365 Source and Amazon Redshift Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Microsoft Dynamics 365 source and a Amazon Redshift target:
Microsoft Dynamics 365 Source Data Type
Amazon Redshift Target Data Type
biginttype
bigint
datetimetype
timestamp without time zone
decimaltype(38,38)
character varying(41)
decimaltype(p,s), 1 <= p <= 38, 0 <= s <= 37
numeric(p,s), 1 <= p <= 38, 0 <= s <= 37
doubletype
double precision
filetype(precision), 1 <= p <= 134217728
binary varying(size), 1 <= s <= 1024000
imagetype(precision), 1 <= p <= 31457280
binary varying(size), 1 <= s <= 1024000
integertype
integer
managedpropertytype(precision), 1 <= p <= 10485760
character varying(size), 4 <= s <= 65535
memotype(precision), 1 <= p <= 1048576
character varying(size), 4 <= s <= 65535
moneytype(38,38)
character varying(41)
moneytype(p,s), 1 <= p <= 38, 0 <= s <= 37
numeric(p,s), 1 <= p <= 38, 0 <= s <= 37
picklisttype
integer
statetype
integer
statustype
integer
stringtype(precision), 1 <= p <= 3901
character varying(size), 4 <= s <= 15604
uniqueidentifier(16)
character(36)
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

Microsoft Dynamics 365 Source and Databricks Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Microsoft Dynamics 365 source and a Databricks target:
Microsoft Dynamics 365 Source Data Type
Databricks Target Data Type
biginttype
long
datetimetype
timestamp
decimaltype(p,s), 1 <= p <= 38, 0 <= s <= 38
decimal(p,s), 1 <= p <= 38, 0 <= s <= 38
doubletype
double
filetype(precision), 1 <= p <= 134217728
binary
imagetype(precision), 1 <= p <= 31457280
binary
integertype
integer
managedpropertytype(precision), 1 <= p <= 10485760
string
memotype(precision), 1 <= p <= 1048576
string
moneytype(p,s), 1 <= p <= 38, 0 <= s <= 38
decimal(p,s), 1 <= p <= 38, 0 <= s <= 38
picklisttype
integer
statetype
integer
statustype
integer
stringtype(precision), 1 <= p <= 3901
string
uniqueidentifier(16)
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

Microsoft Dynamics 365 Source and Google BigQuery Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Microsoft Dynamics 365 source and a Google BigQuery target:
MSD365 Source Data Type
Google BigQuery Target Data Type
biginttype
int64
datetimetype
datetime
decimaltype(10,10)
bignumeric
decimaltype(11,s), 10 <= s <= 11
bignumeric
decimaltype(12,s), 10 <= s <= 12
bignumeric
decimaltype(13,s), 10 <= s <= 13
bignumeric
decimaltype(14,s), 10 <= s <= 14
bignumeric
decimaltype(15,s), 10 <= s <= 15
bignumeric
decimaltype(16,s), 10 <= s <= 16
bignumeric
decimaltype(17,s), 10 <= s <= 17
bignumeric
decimaltype(18,s), 10 <= s <= 18
bignumeric
decimaltype(19,s), 10 <= s <= 19
bignumeric
decimaltype(20,s), 10 <= s <= 20
bignumeric
decimaltype(21,s), 10 <= s <= 21
bignumeric
decimaltype(22,s), 10 <= s <= 22
bignumeric
decimaltype(23,s), 10 <= s <= 23
bignumeric
decimaltype(24,s), 10 <= s <= 24
bignumeric
decimaltype(25,s), 10 <= s <= 25
bignumeric
decimaltype(26,s), 10 <= s <= 26
bignumeric
decimaltype(27,s), 10 <= s <= 27
bignumeric
decimaltype(28,s), 10 <= s <= 28
bignumeric
decimaltype(38,s), 10 <= s <= 38
bignumeric
decimaltype(p,s), 1 <= p <= 38, 0 <= s <= 9
numeric
decimaltype(p,s), 29 <= p <= 30, 0 <= s <= 29
bignumeric
decimaltype(p,s), 30 <= p <= 31, 0 <= s <= 30
bignumeric
decimaltype(p,s), 31 <= p <= 32, 0 <= s <= 31
bignumeric
decimaltype(p,s), 32 <= p <= 33, 0 <= s <= 32
bignumeric
decimaltype(p,s), 33 <= p <= 34, 0 <= s <= 33
bignumeric
decimaltype(p,s), 34 <= p <= 35, 0 <= s <= 34
bignumeric
decimaltype(p,s), 35 <= p <= 36, 0 <= s <= 35
bignumeric
decimaltype(p,s), 36 <= p <= 37, 0 <= s <= 36
bignumeric
decimaltype(p,s), 37 <= p <= 38, 0 <= s <= 37
bignumeric
doubletype
float64
filetype(precision), 1 <= p <= 134217728
bytes
imagetype(precision), 1 <= p <= 31457280
bytes
integertype
int64
managedpropertytype(precision), 1 <= p <= 10485760
string
memotype(precision), 1 <= p <= 1048576
string
moneytype(10,10)
bignumeric
moneytype(11,s), 10 <= s <= 11
bignumeric
moneytype(12,s), 10 <= s <= 12
bignumeric
moneytype(13,s), 10 <= s <= 13
bignumeric
moneytype(14,s), 10 <= s <= 14
bignumeric
moneytype(15,s), 10 <= s <= 15
bignumeric
moneytype(16,s), 10 <= s <= 16
bignumeric
moneytype(17,s), 10 <= s <= 17
bignumeric
moneytype(18,s), 10 <= s <= 18
bignumeric
moneytype(19,s), 10 <= s <= 19
bignumeric
moneytype(20,s), 10 <= s <= 20
bignumeric
moneytype(21,s), 10 <= s <= 21
bignumeric
moneytype(22,s), 10 <= s <= 22
bignumeric
moneytype(23,s), 10 <= s <= 23
bignumeric
moneytype(24,s), 10 <= s <= 24
bignumeric
moneytype(25,s), 10 <= s <= 25
bignumeric
moneytype(26,s), 10 <= s <= 26
bignumeric
moneytype(27,s), 10 <= s <= 27
bignumeric
moneytype(28,s), 10 <= s <= 28
bignumeric
moneytype(38,s), 10 <= s <= 38
bignumeric
moneytype(p,s), 1 <= p <= 38, 0 <= s <= 9
numeric
moneytype(p,s), 29 <= p <= 30, 0 <= s <= 29
bignumeric
moneytype(p,s), 30 <= p <= 31, 0 <= s <= 30
bignumeric
moneytype(p,s), 31 <= p <= 32, 0 <= s <= 31
bignumeric
moneytype(p,s), 32 <= p <= 33, 0 <= s <= 32
bignumeric
moneytype(p,s), 33 <= p <= 34, 0 <= s <= 33
bignumeric
moneytype(p,s), 34 <= p <= 35, 0 <= s <= 34
bignumeric
moneytype(p,s), 35 <= p <= 36, 0 <= s <= 35
bignumeric
moneytype(p,s), 36 <= p <= 37, 0 <= s <= 36
bignumeric
moneytype(p,s), 37 <= p <= 38, 0 <= s <= 37
bignumeric
picklisttype
int64
statetype
int64
statustype
int64
stringtype(precision), 1 <= p <= 3901
string
uniqueidentifier(16)
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

Microsoft Dynamics 365 Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Microsoft Dynamics 365 source and a Microsoft Azure Synapse Analytics target:
MSD365 Source Data Type
Microsoft Azure SQL Data Warehouse or Synapse Analytics Target Data Type
biginttype
bigint
datetimetype
datetime
decimaltype(p,s), 1 <= p <= 38, 0 <= s <= 38
decimal(p,s), 1 <= p <= 38, 0 <= s <= 38
doubletype
float
filetype(1)
binary
filetype(precision), 100001 <= p <= 134217728
varbinary(max)
imagetype(1)
binary
imagetype(precision), 1000001 <= p <= 31457280
varbinary(max)
integertype
int
managedpropertytype(precision), 1 <= p <= 10485760
varchar(size), 4 <= s <= max
memotype(precision), 1 <= p <= 1048576
varchar(size), 4 <= s <= max
moneytype(p,s), 1 <= p <= 38, 0 <= s <= 38
decimal(p,s), 1 <= p <= 38, 0 <= s <= 38
picklisttype
int
statetype
int
statustype
int
stringtype(precision), 1 <= p <= 3901
varchar(size), 4 <= s <= max
uniqueidentifier(16)
uniqueidentifier
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

Microsoft Dynamics 365 Source and Microsoft Azure SQL Database Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Microsoft Dynamics 365 source and a Microsoft Azure SQL Database target:
Microsoft Dynamics 365 Source Data Type
Microsoft Azure SQL Database Target Data Type
biginttype
bigint
booleantype
bit
datetimetype
datetime2(0)
decimaltype(p,s), 1 <= p <= 38, 0 <= s <= 38
decimal(p,s), 1 <= p <= 38, 0 <= s <= 38
doubletype
float
filetype(precision), 1 <= p <= 134217728
varbinary(max)
imagetype(precision), 1 <= p <= 31457280
varbinary(max)
integertype
int
managedpropertytype(precision), 1 <= p <= 10485760
varchar(size), 4 <= s <= max
memotype(precision), 1 <= p <= 1048576
varchar(size), 4 <= s <= max
moneytype(p,s), 1 <= p <= 38, 0 <= s <= 38
decimal(p,s), 1 <= p <= 38, 0 <= s <= 38
picklisttype
int
statetype
int
statustype
int
stringtype(precision), 1 <= p <= 3901
varchar(size), 4 <= s <= max
uniqueidentifier(16)
uniqueidentifier
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft SQL Server target.

Microsoft Dynamics 365 Source and Oracle Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Microsoft Dynamics 365 source and an Oracle target:
MSD365 Source Data Type
Oracle Target Data Type
biginttype
number(19)
datetimetype
date
decimaltype(p,s), 1 <= p <= 38, 0 <= s <= 38
number(p,s), 1 <= p <= 38, 0 <= s <= 38
doubletype
binary_double
filetype(precision), 1 <= p <= 134217728
blob
imagetype(precision), 1 <= p <= 31457280
blob
integertype
number(10)
managedpropertytype(precision), 1 <= p <= 1001
char(s char), 4 <= s <= 2000
managedpropertytype(precision), 2001 <= p <= 10485760
clob
memotype(precision), 1 <= p <= 1001
char(s char), 4 <= s <= 2000
memotype(precision), 2001 <= p <= 1048576
clob
moneytype(p,s), 1 <= p <= 38, 0 <= s <= 38
number(p,s), 1 <= p <= 38, 0 <= s <= 38
picklisttype
number(10)
statetype
number(10)
statustype
number(10)
stringtype(precision), 1 <= p <= 1901
char(s char), 4 <= s <= 2000
stringtype(precision), 2001 <= p <= 3901
clob
uniqueidentifier(16)
char(36 char)
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

Microsoft Dynamics 365 Source and Snowflake Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Microsoft Dynamics 365 source and a Snowflake target:
MSD365 Source Data Type
Snowflake Target Data Type
biginttype
number(19)
datetimetype
datetime(0)
decimaltype(38,38)
char(41)
decimaltype(p,s), 1 <= p <= 38, 0 <= s <= 37
number(p,s), 1 <= p <= 38, 0 <= s <= 37
doubletype
float
filetype(precision), 1 <= p <= 134217728
binary(size), 1 <= s <= 8300001
imagetype(precision), 1 <= p <= 31457280
binary(size), 1 <= s <= 8000001
integertype
number(10)
managedpropertytype(precision), 1 <= p <= 10485760
variant
memotype(precision), 1 <= p <= 1048576
char(size), 4 <= s <= 4194304
moneytype(38,38)
char(41)
moneytype(p,s), 1 <= p <= 38, 0 <= s <= 37
number(p,s), 1 <= p <= 38, 0 <= s <= 37
picklisttype
number(10)
statetype
number(10)
statustype
number(10)
stringtype(precision), 1 <= p <= 3901
char(size), 4 <= s <= 15604
uniqueidentifier(16)
char(36)
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

NetSuite Source and Amazon Redshift Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a NetSuite source and an Amazon Redshift target:
NetSuite Source Data Type
Amazon Redshift Target Data Type
bigint
bigint
char
character varying(4)
clob
binary varying(size), 262144 <= size <= 400000
clob
character varying(size), 4 <= size <= 65535
double(p,s), 1 <= p <= 38, 0 <= s <= 18
numeric(p,s), 1 <= p <= 38, 0 <= s <= 18
number
character varying(size), 40 <= size <= 41
number
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
timestamp
timestamp without time zone
varchar2
character varying(size), 4 <= size <= 65535
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon S3 target.

NetSuite Source and Databricks Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a NetSuite source and a Databricks target:
NetSuite Source Data Type
Databricks Target Data Type
bigint
byte
bigint
integer
bigint
long
char
string
clob
string
double(p,s), 1 <= p <= 38, 0 <= s <= 18
decimal(p,s), 1 <= p <= 38, 1 <= s <= 18
number
decimal(p,s), 1 <= p <= 38, 0 <= s <= 16
number
string
timestamp
timestamp
varchar2
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

NetSuite Source and Google BigQuery Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a NetSuite source and a Google BigQuery target:
NetSuite Source Data Type
Google BigQuery Target Data Type
bigint
int64
char
string
clob
string
double(p,s), 1 <= p <= 38, 0 <= s <= 18
bignumeric
number
bignumeric
number
bignumeric
number
numeric
timestamp
datetime
varchar2
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

NetSuite Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a NetSuite source and a Microsoft Azure Synapse Analytics target:
NetSuite Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
bigint
bigint
char
nchar
clob
char(8000)
clob
nchar(size), 1 <= size <= 4000
clob
nvarchar(max)
clob
nvarchar(max)
double(p,s), 1 <= p <= 38, 0 <= s <= 18
decimal(p,s), 1 <= p <= 38, 1 <= s <= 18
number
decimal(p,s), 1 <= p <= 38, 0 <= s <= 16
number
varchar(size), 40 <= size <= 41
timestamp
datetime
varchar2
varchar(size), 4 <= size <= max
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

NetSuite Source and Oracle Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a NetSuite source and an Oracle target:
NetSuite Source Data Type
Oracle Target Data Type
bigint
char(s char), 2 <= s <= 13
char
char(4 char)
clob
char(s char), 4 <= s <= 2000
clob
clob
double(p,s), 1 <= p <= 38, 0 <= s <= 18
number(p,s), 1 <= p <= 38, 1 <= s <= 18
number
char(s char), 40 <= s <= 41
number
number(p,s), 1 <= p <= 38, 0 <= s <= 16
timestamp
timestamp(1)
varchar2
char(s char), 4 <= s <= 2000
varchar2
clob
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

NetSuite Source and Snowflake Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a NetSuite source and a Snowflake target:
NetSuite Source Data Type
Snowflake Target Data Type
bigint
char(size), 2 <= size <= 13
char
char(4)
clob
char(size), 4 <= size <= 400000
double(p,0), 1 <= p <= 38
integer
double(p,s), 1 <= p <= 38, 1 <= s <= 18
number(p,s), 1 <= p <= 38, 1 <= s <= 18
number
number(p,s), 1 <= p <= 38, 0 <= s <= 16
number
varchar(size), 40 <= size <= 41
timestamp
datetime(1)
varchar2
varchar(size), 4 <= size <= 262136
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

Oracle Fusion Cloud source and Amazon Redshift target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an Oracle Fusion Cloud source and Amazon Redshift target:
Oracle Fusion Cloud Source Data Type
Amazon Redshift Target Data Type
boolean
boolean
char(p), 1 <= p <= 2000
character varying(p), 4 <= p <= 8000
date
date
datetime
timestamp without time zone
datetime
timestamp without time zone
double
double precision
float
real
integer(p), 1 <= p <= 64
bigint
integer(p), 128 <= p <= 255
character varying(p), 40 <= p <= 78
integer(p), 65 <= p <= 127
numeric(p,0), 20 <= p <= 38
json
super
longvarchar(p), 1 <= p <= 2147483647
character varying(p), 4 <= p <= 65535
number(p,s), 2 <= p <= 38, 1 <= s <= 10
numeric(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
numeric(p,s), 2 <= p <= 38, 1 <= s <= 10
string(p), 1 <= p <= 2147483647
character varying(p), 4 <= p <= 65535
varchar(p), 1 <= p <= 2147483647
character varying(p), 4 <= p <= 65535
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

Oracle Fusion Cloud source and Databricks target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an Oracle Fusion Cloud source and a Databricks target:
Oracle Fusion Cloud Source Data Type
Databricks Target Data Type
boolean
boolean
char(p), 1 <= p <= 2000
string
date
string
datetime
timestamp
datetime
timestamp
double
double
float
float
integer(p), 1 <= p <= 9
byte
integer(p), 10 <= p <= 32
integer
integer(p), 128 <= p <= 255
string
integer(p), 33 <= p <= 64
long
integer(p), 65 <= p <= 127
decimal(p), 20 <= p <= 38
longvarchar(p), 1 <= p <= 2147483647
string
number(p,s), 2 <= p <= 38, 1 <= s <= 10
decimal(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
decimal(p,s), 2 <= p <= 38, 1 <= s <= 10
string(p), 1 <= p <= 2147483647
string
varchar(p), 1 <= p <= 2147483647
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

Oracle Fusion Cloud source and Google BigQuery target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an Oracle Fusion Cloud source and Google BigQuery target:
Oracle Fusion Cloud Source Data Type
Google BigQuery Target Data Type
boolean
bool
char(p), 1 <= p <= 2000
string
date
date
datetime
datetime
datetime
datetime
double
float64
float
float64
integer(p), 1 <= p <= 64
int64
integer(p), 128 <= p <= 255
string
integer(p), 65 <= p <= 127
bignumeric
json
json
longvarchar(p), 1 <= p <= 2147483647
string
number(p,s), 2 <= p <= 38, 1 <= s <= 10
bignumeric
number(p,s), 2 <= p <= 38, 1 <= s <= 10
bignumeric
string(p), 1 <= p <= 2147483647
string
varchar(p), 1 <= p <= 2147483647
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

Oracle Fusion Cloud source and Oracle target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an Oracle Fusion Cloud source and Oracle target:
Oracle Fusion Cloud Source Data Type
Oracle Target Data Type
boolean
char(1 char)
char(p), 1 <= p <= 2000
char(s char), 4 <= s <= 2000
date
date
datetime
timestamp(3)
datetime
timestamp(3)
double
binary_double
float
binary_double
integer(1)
char(1 char)
integer(p), 128 <= p <= 255
char(s char), 40 <= s <= 78
integer(p), 2 <= p <= 127
number(p), 1 <= p <= 38
longvarchar(p), 1 <= p <= 2000
char(s char), 4 <= s <= 2000
longvarchar(p), 2001 <= p <= 2147483647
clob
number(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
string(p), 1 <= p <= 2000
char(s char), 4 <= s <= 2000
string(p), 2001 <= p <= 2147483647
clob
varchar(p), 1 <= p <= 2000
char(s char), 4 <= s <= 2000
varchar(p), 2001 <= p <= 2147483647
clob
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

Oracle Fusion Cloud source and Microsoft Azure Synapse Analytics target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an Oracle Fusion Cloud source and a Microsoft Azure Synapse Analytics target:
Oracle Fusion Cloud Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
boolean
bit
char(p), 1 <= p <= 2000
varchar(p), 4 <= p <= 8000
date
date
datetime
datetime
datetime
datetime
double
float
float
real
integer(p), 1 <= p <= 64
bigint
integer(p), 128 <= p <= 255
char(p), 40 <= p <= 78
integer(p), 65 <= p <= 127
decimal(p), 20 <= p <= 38
longvarchar(p), 1 <= p <= 2147483647
varchar(p), 4 <= p <= max
number(p,s), 2 <= p <= 38, 1 <= s <= 10
decimal(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
decimal(p,s), 2 <= p <= 38, 1 <= s <= 10
string(p), 1 <= p <= 2147483647
varchar(p), 4 <= p <= max
varchar(p), 1 <= p <= 2147483647
varchar(p), 4 <= p <= max
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

Oracle Fusion Cloud source and Snowflake target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an Oracle Fusion Cloud source and Snowflake target:
Oracle Fusion Cloud Source Data Type
Snowflake Target Data Type
boolean
boolean
char(p), 1 <= p <= 2000
varchar(p), 4 <= p <= 8000
date
date
datetime
datetime(3)
datetime
datetime(3)
double
float
float
float
integer(1)
char
integer(p), 128 <= p <= 255
char(p), 40 <= p <= 78
integer(p), 2 <= p <= 127
integer
json
variant
longvarchar(p), 1 <= p <= 2147483647
varchar(p), 4 <= p <= 127996
number(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
number(p,s), 2 <= p <= 38, 1 <= s <= 10
string(p), 1 <= p <= 2147483647
varchar(p), 4 <= p <= 127996
varchar(p), 1 <= p <= 2147483647
varchar(p), 4 <= p <= 127996
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

Salesforce Source and Amazon Redshift Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and an Amazon Redshift target:
Salesforce Source Data Type
Amazon Redshift Target Data Type
anytype(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
base64
Note: The precision depends on the base64 body size you select.
character varying(size), 1 <= size <= 65535
boolean
boolean
combobox(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
currency(p,s), 1 <= p <= 18, 0 <= s <= 17
numeric(p,s), 1 <= p <= 18, 0 <= s <= 17
date
date
datetime
timestamp without time zone
double(p,s), 1 <= p <= 18, 0 <= s <= 17
numeric(p,s), 1 <= p <= 18, 0 <= s <= 17
email(precision), 1 <= p <= 80
character varying(size), 1 <= size <= 80
encryptedstring(precision), 1 <= p <= 175
character varying(size), 1 <= size <= 175
id(precision), 1 <= p <= 18
character varying(size), 1 <= size <= 18
int
integer
long
bigint
multipicklist(precision), 1 <= p <= 4099
character varying(size), 1 <= size<= 4099
percent(p,s), 1 <= p <= 18, 0 <= s <= 17
numeric(p,s), 1 <= p <= 18, 0 <= s <= 17
phone(precision), 1 <= p <= 40
character varying(size), 1 <= size <= 40
picklist(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
reference(precision), 1 <= p <= 18
character varying(size), 1 <= size <= 18
string(precision), 1 <= p <= 100
character varying(size), 1 <= size <= 100
textarea(precision), 1 <= p <= 131072
character varying(size), 1 <= size <= 65535
time
time without time zone
url(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

Salesforce Source and Databricks Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and a Databricks target:
Salesforce Source Data Type
Databricks Target Data Type
anytype(precision), 1 <= p <= 255
string
base64
Note: The precision depends on the base64 body size you select.
string
boolean
boolean
combobox(precision), 1 <= p <= 255
string
currency(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
date
string
datetime
timestamp
double(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
email(precision), 1 <= p <= 80
string
encryptedstring(precision), 1 <= p <= 175
string
id(precision), 1 <= p <= 18
string
int
integer
long
long
multipicklist(precision), 1 <= p <= 4099
string
percent(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
phone(precision), 1 <= p <= 40
string
picklist(precision), 1 <= p <= 255
string
reference(precision), 1 <= p <= 18
string
string(precision), 1 <= p <= 100
string
textarea(precision), 1 <= p <=131072
string
time
string
url(precision), 1 <= p <= 255
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

Salesforce Source and Google BigQuery Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and a Google BigQuery target:
Salesforce Source Data Type
Google BigQuery Target Data Type
anytype(precision), 1 <= p <= 255
string
base64
Note: The precision depends on the base64 body size you select.
string
boolean
bool
combobox(precision), 1 <= p <= 255
string
currency(p,0), 1 <= p <= 18
numeric
currency(p,s), 1 <= p <= 18, 1 <= s <= 9
numeric
currency(p,s), 1 <= p <= 18, 10 <= s <= 17
bignumeric
date
date
datetime
datetime
double(p,0), 1 <= p <= 18
numeric
double(p,s), 1 <= p <= 18, 1 <= s <= 9
numeric
double(p,s), 1 <= p <= 18, 10 <= s <= 17
bignumeric
email(precision), 1 <= p <= 80
string
encryptedstring(precision), 1 <= p <= 175
string
id(precision), 1 <= p <= 18
string
int
int64
long
int64
multipicklist(precision), 1 <= p <= 4099
string
percent(p,0), 1 <= p <= 18
numeric
percent(p,s), 1 <= p <= 18, 1 <= s <= 9
numeric
percent(p,s), 1 <= p <= 18, 10 <= s <= 17
bignumeric
phone(precision), 1 <= p <= 40
string
picklist(precision), 1 <= p <= 255
string
reference(precision), 1 <= p <= 18
string
string(precision), 1 <= p <= 100
string
textarea(precision), 1 <= p <=131072
string
time
time
url(precision), 1 <= p <= 255
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

Salesforce Source and Microsoft Azure Synapse Analytics Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and a Microsoft Azure Synapse Analytics target:
Salesforce Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
anytype(precision), 1 <= p <= 255
varchar(size), 1 <= size <= 255
base64
Note: The precision depends on the base64 body size you select.
nchar(size), 1 <= size <= 255
boolean
bit
combobox(precision), 1 <= p <= 255
varchar(size), 1 <= size <= 255
currency(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
date
date
datetime
datetime2(3)
double(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
email(precision), 1 <= p <= 80
varchar(size), 1 <= size <= 80
encryptedstring(precision), 1 <= p <= 175
varchar(size), 1 <= size <= 175
id(precision), 1 <= p <= 18
varchar(size), 1 <= size <= 18
int
int
long
bigint
multipicklist(precision), 1 <= p <= 4099
varchar(size), 1 <= size <= 4099
percent(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
phone(precision), 1 <= p <= 40
varchar(size), 1 <= size <= 40
picklist(precision), 1 <= p <= 255
varchar(size), 1 <= size <= 255
reference(precision), 1 <= p <= 18
varchar(size), 1 <= size <= 18
string(precision), 1 <= p <= 100
varchar(size), 1 <= size <= 100
textarea(precision), 1 <= p <=131072
varchar(size), 1 <= size <= max
time
time(3)
url(precision), 1 <= p <= 255
varchar(size), 1 <= size <= 255
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

Salesforce Source and Microsoft Azure SQL Database Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and Microsoft Azure SQL Database target:
Salesforce Source Data Type
Microsoft Azure SQL Database Target Data Type
anytype(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
base64
Note: The precision depends on the base64 body size you select.
character varying(size), 1 <= size <= max
boolean
bit
combobox(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
currency(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
date
date
datetime
datetime2 (3)
double(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
email(precision), 1 <= p <= 80
character varying(size), 1 <= size <= 80
encryptedstring(precision), 1 <= p <= 175
character varying(size), 1 <= size <= 175
id(precision), 1 <= p <= 18
character varying(size), 1 <= size <= 18
int
int
long
long
multipicklist(precision), 1 <= p <= 4099
character varying(size), 1 <= size <= 4099
percent(p,s), 1 <= p <= 18, 0 <= s <= 17
decimal(p,s), 1 <= p <= 18, 1 <= s <= 17
phone(precision), 1 <= p <= 40
character varying(size), 1 <= size <= 40
picklist(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
reference(precision), 1 <= p <= 18
character varying(size), 1 <= size <= 18
string(precision), 1 <= p <= 100
character varying(size), 1 <= size <= 100
textarea(precision), 1 <= p <= 131072
character varying(size), 1 <= size <= 131072
time
time(precision) without time zone, 3 <= p <= null
url(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft SQL Server target.

Salesforce Source and Oracle Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and an Oracle target:
Salesforce Source Data Type
Oracle Target Data Type
anytype(precision), 1 <= p <= 255
char(s char), 1 <= s <= 255
base64
Note: The precision depends on the base64 body size you select.
clob
boolean
char(1 char)
combobox(precision), 1 <= p <= 255
char(s char), 1 <= s <= 255
currency(p,s), 1 <= p <= 18, 0 <= s <= 17
number(p,s), 1 <= p <= 18, 1 <= s <= 17
date
date
datetime
timestamp(3)
double(p,s), 1 <= p <= 18, 0 <= s <= 17
number(p,s), 1 <= p <= 18, 1 <= s <= 17
email(precision), 1 <= p <= 80
char(s char), 1<= s <= 80
encryptedstring(precision), 1 <= p <= 175
char(s char), 1 <= s <= 175
id(precision), 1 <= p <= 18
char(s char), 1 <= s <= 18
int
number(10)
long
number(19)
multipicklist(precision),1 <= p <= 4099
clob
percent(p,s), 1 <= p <= 18, 0 <= s <= 17
number(p,s), 1 <= p <= 18, 1 <= s <= 17
phone(precision), 1 <= p <= 40
char(s char), 1 <= s <= 40
picklist(precision), 1 <= p <= 255
char(s char), 1 <= s <= 255
reference(precision), 1 <= p <= 18
char(s char), 1 <= s <= 18
string(precision), 1 <= p <= 100
char(s char), 1 <= s <= 100
textarea(precision), 1 <= p <= 4000
char(s char), 1 <= s <= 4000
textarea(precision), 4001 <= p <= 131072
clob
time
timestamp(3)
url(precision), 1 <= p <= 255
char(s char), 1<= s <= 255
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

Salesforce Source and PostgreSQL Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and a PostgreSQL target:
Salesforce Source Data Type
PostgreSQL Target Data Type
anytype(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
base64
Note: The precision depends on the base64 body size you select.
character varying(size), 1 <= size <= max
boolean
boolean
combobox(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
currency(p,s), 1 <= p <= 18, 0 <= s <= 17
numeric(p,s), 1 <= p <= 18, 1 <= s <= 17
date
date
datetime
timestamp(precision) without time zone, 3 <= p <= null
double(p,s), 1 <= p <= 18, 0 <= s <= 17
numeric(p,s), 1 <= p <= 18, 1 <= s <= 17
email(precision), 1 <= p <= 80
character varying(size), 1 <= size <= 80
encryptedstring(precision), 1 <= p <= 175
character varying(size), 1 <= size <= 175
id(precision), 1 <= p <= 18
character varying(size), 1 <= size <= 18
int
integer
long
bigint
multipicklist(precision), 1 <= p <= 4099
character varying(size), 1 <= size <= 4099
percent(p,s), 1 <= p <= 18, 0 <= s <= 17
numeric(p,s), 1 <= p <= 18, 1 <= s <= 17
phone(precision), 1 <= p <= 40
character varying(size), 1 <= size <= 40
picklist(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
reference(precision), 1 <= p <= 18
character varying(size), 1 <= size <= 18
string(precision), 1 <= p <= 100
character varying(size), 1 <= size <= 100
textarea(precision), 1 <= p <= 131072
character varying(size), 1 <= size <= 131072
time
time(precision) without time zone, 3 <= p <= null
url(precision), 1 <= p <= 255
character varying(size), 1 <= size <= 255
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a PostgreSQL target.

Salesforce Source and Snowflake Target

The following table identifies the default data-type mappings for Application Ingestion and Replication configurations with a Salesforce source and a Snowflake target:
Salesforce Source Data Type
Snowflake Target Data Type
anytype(precision), 1 <= p <= 255
char(size), 4 <= size <= 1020
base64
Note: The precision depends on the base64 body size you select.
char(size), 4 <= size <= 1020
boolean
boolean
combobox(precision), 1 <= p <= 255
char(size), 4 <= size <= 1020
currency(p,0), 1 <= p <= 18
integer
currency(p,s), 1 <= p <= 18, 1 <= s <= 17
number(p,s), 1 <= p <= 18, 1 <= s <= 17
date
date
datetime
datetime(3)
double(p,0), 1 <= p <= 18
integer
double(p,s), 1 <= p <= 18, 1 <= s <= 17
number(p,s), 1 <= p <= 18, 1 <= s <= 17
email(precision), 1 <= p <= 80
char(size), 4 <= size <= 320
encryptedstring(precision), 1 <= p <= 175
char(size), 4 <= size <= 700
id(precision), 1 <= p <= 18
char(size), 4 <= size <= 72
int
number(10)
long
number(19)
multipicklist(precision), 1 <= p <= 4099
char(size), 4 <= size <= 16396
percent(p,0), 1 <= p <= 18
integer
percent(p,s), 1 <= p <= 18, 1 <= s <= 17
number(p,s), 1 <= p <= 18, 1 <= s <= 17
phone(precision), 1 <= p <= 40
char(size), 4 <= size <= 160
picklist(precision), 1 <= p <= 255
char(size), 4 <= size <= 1020
reference(precision), 1 <= p <= 18
char(size), 4 <= size <= 72
string(precision), 1 <= p <= 100
char(size), 4 <= size <= 400
textarea(precision), 1 <= p <= 131072
char(size), 4 <= size <= 131072
time
time(3)
url(precision), 1 <= p <= 255
char(size), 4 <= size <= 1020
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

Salesforce Marketing Cloud Source and Amazon Redshift Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Salesforce Marketing Cloud source and an Amazon Redshift target:
Salesforce Marketing Cloud Source Data Type
Amazon Redshift Target Data Type
boolean
boolean
date(0)
timestamp without time zone
decimal(p,s), 1 <= p <= 29, 0 <= s <= 8
numeric(p,s), 1 <= p <= 29, 0 <= s <= 8
emailaddress(precision), 1 <= p <= 254
character varying(size), 4 <= size <= 1016
locale(precision), 1 <= p <= 5
character varying(size), 4 <= size <= 20
number
integer
phone(precision), 1 <= p <= 50
character varying(size), 4 <= size <= 200
text(precision), 1 <= p <= 4000
character varying(size), 4 <= size <= 16000
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

Salesforce Marketing Cloud Source and Databricks Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Salesforce Marketing Cloud source and a Databricks target:
Salesforce Marketing Cloud Source Data Type
Databricks Target Data Type
boolean
boolean
date(0)
timestamp
decimal(p,s), 1 <= p <= 29, 0 <= s <= 8
decimal(p,s), 1 <= p <= 29, 1 <= s <= 8
emailaddress(precision), 1 <= p <= 254
string
locale(precision), 1 <= p <= 5
string
number
integer
phone(precision), 1 <= p <= 50
string
text(precision), 1 <= p <= 4000
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

Salesforce Marketing Cloud Source and Google BigQuery Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Salesforce Marketing Cloud source and a Google BigQuery target:
Salesforce Marketing Cloud Source Data Type
Google BigQuery Target Data Type
boolean
bool
date(0)
datetime
decimal(p,s), 1 <= p <= 29, 0 <= s <= 8
bignumeric
emailaddress(precision), 1 <= p <= 254
string
locale(precision), 1 <= p <= 5
string
number
int64
phone(precision), 1 <= p <= 50
string
text(precision), 1 <= p <= 4000
string
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

Salesforce Marketing Cloud Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Salesforce Marketing Cloud source and a Microsoft Azure Synapse Analytics target:
Salesforce Marketing Cloud Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
boolean
bit
date(0)
datetime
decimal(p,s), 1 <= p <= 29, 0 <= s <= 8
decimal(p,s), 1 <= p <= 29, 1 <= s <= 8
emailaddress(precision), 1 <= p <= 254
nchar(size), 1 <= size <= 254
locale(precision), 1 <= p <= 5
nchar(size), 1 <= size <= 5
number
int
phone(precision), 1 <= p <= 50
nchar(size), 1 <= size <= 50
text(precision), 1 <= p <= 4000
nchar(size), 1 <= size <= 4000
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

Salesforce Marketing Cloud Source and Oracle Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Salesforce Marketing Cloud source and an Oracle target:
Salesforce Marketing Cloud Source Data Type
Oracle Target Data Type
boolean
char(1 char)
date(0)
date
decimal(p,s), 1 <= p <= 29, 0 <= s <= 8
number(p,s), 1 <= p <= 29, 1 <= s <= 8
emailaddress(precision), 1 <= p <= 254
char(s char), 4 <= s <= 1016
locale(precision), 1 <= p <= 5
char(s char), 4 <= s <= 20
number
number(10)
phone(precision), 1 <= p <= 50
char(s char), 4 <= s <= 200
text(precision), 1 <= p <= 2000
char(s char), 4 <= s <= 2000
text(precision), 2001 <= p <= 4000
clob
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

Salesforce Marketing Cloud Source and Snowflake Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a Salesforce Marketing Cloud source and a Snowflake target:
Salesforce Marketing Cloud Source Data Type
Snowflake Target Data Type
boolean
boolean
date(0)
datetime(0)
decimal(p,0), 1 <= p <= 29
integer
decimal(p,s), 1 <= p <= 29, 1 <= s <= 8
number(p,s), 1 <= p <= 29, 1 <= s <= 8
emailaddress(precision), 1 <= p <= 254
char(size), 4 <= size <= 1016
locale(precision), 1 <= p <= 5
char(size), 4 <= size <= 20
number
number(10)
phone(precision), 1 <= p <= 50
char(size), 4 <= size <= 200
text(precision), 1 <= p <= 4000
char(size), 4 <= size <= 16000
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

SAP Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP source and an Amazon Redshift target:
SAP Source Data Type
Amazon Redshift Target Data Type
d16r
double precision
d34r
double precision
fltp
double precision
int1
smallint
int2
smallint
int4
integer
int8
bigint
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the RSTR data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

SAP Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP source and a Databricks target:
SAP Source Data Type
Databricks Target Data Type
d16r
double
d34r
double
fltp
double
int1
integer
int2
integer
int4
integer
int8
long
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the RSTR data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

SAP Source and Google BigQuery Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP source and a Google BigQuery target:
SAP Source Data Type
Google BigQuery Target Data Type
d16r
float64
d34r
float64
fltp
float64
int1
int64
int2
int64
int4
int64
int8
int64
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the RSTR data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

SAP Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP source and a Microsoft Azure Synapse Analytics target:
SAP Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
d16r
float
d34r
float
fltp
float
int1
tinyint
int2
smallint
int4
int
int8
bigint
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the RSTR data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

SAP Source and Oracle Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with an SAP source and an Oracle target:
SAP Source Data Type
Oracle Target Data Type
CHAR
VARCHAR2(20)
ACCP
VARCHAR2(24)
CURR
NUMBER(31,8)
CUKY
VARCHAR2(20)
DF16_DEC
BINARY_DOUBLE
DF16_RAW
BINARY_DOUBLE
DF34_DEC
BINARY_DOUBLE
DF34_RAW
BINARY_DOUBLE
DEC
NUMBER(31,9)
DATS
DATE
CLNT
VARCHAR2(12)
INT2
NUMBER(5,0)
LANG
VARCHAR2(4)
NUMC
VARCHAR2(40)
RAW
BLOB
SSTRING
CLOB
STRING
CLOB
TIMS
TIMESTAMP
QUAN
NUMBER(31,6)
UNIT
VARCHAR2(12)
INT1
NUMBER(3,0)
INT4
NUMBER(10,0)
LCHR
VARCHAR2(2000)
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the RSTR data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

SAP Source and Snowflake Target

The following table identifies the recommended data-type mappings for Application Ingestion and Replication configurations with a SAP source and a Snowflake target:
SAP Source Data Type
Snowflake Target Data Type
d16r
float
d34r
float
fltp
float
int1
number(3)
int2
number(5)
int4
number(10)
int8
number(19)
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the RSTR data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

SAP Mass Ingestion connection Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP Mass Ingestion connection source and an Amazon Redshift target:
SAP Mass Ingestion connection Source Data Type
Amazon Redshift Target Data Type
accp(6)
character varying(24)
char(p), 1 <= p <= 255
character varying(p), 4 <= p <= 1020
clnt(p), 1 <= p <= 3
character varying(p), 4 <= p <= 12
cuky(p), 1 <= p <= 5
character varying(p), 4 <= p <= 20
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
d16r
double precision
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
d34r
double precision
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
fltp
double precision
int1
smallint
int2
smallint
int4
integer
int8
bigint
lang(1)
character varying(4)
lchr *
character varying (65535)
lraw *
binary varying(1024000)
numc(p), 1 <= p <= 255
character varying(p), 4 <= p <= 1020
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
raw(p), 1 <= p <= 255
binary varying(p), 1 <= p <= 255
sstr(p), 1 <= p <= 1333
character varying(p), 4 <= p <= 5332
strg *
character varying (65535)
tims
time without time zone
unit(p), 1 <= p <= 5
character varying(p), 4 <= p <= 20
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

SAP Mass Ingestion connection Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP Mass Ingestion connection source and a Microsoft Azure Synapse Analytics target:
SAP Mass Ingestion connection Source Data Type
Databricks Target Data Type
accp(6)
string
char(p), 1 <= p <= 255
string
clnt(p), 1 <= p <= 3
string
cuky(p), 1 <= p <= 5
string
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
double
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
double
dats
string
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
double
int1
integer
int2
integer
int4
integer
int8
long
lang(1)
string
lchr *
string
lraw *
binary
numc(p), 1 <= p <= 255
string
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(p), 1 <= p <= 255
binary
sstr(p), 1 <= p <= 1333
string
strg *
string
tims
string
unit(p), 1 <= p <= 5
string
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

SAP Mass Ingestion connection Source and Google BigQuery Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP Mass Ingestion connection source and a Google BigQuery target:
SAP Mass Ingestion connection Source Data Type
Google BigQuery Target Data Type
accp(6)
string
char(p), 1 <= p <= 255
string
clnt(p), 1 <= p <= 3
string
cuky(p), 1 <= p <= 5
string
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
d16r
float64
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
fltp
float64
int1
int64
int2
int64
int4
int64
int8
int64
lang(1)
string
lchr *
string
lraw *
bytes
numc(p), 1 <= p <= 255
string
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
raw(p), 1 <= p <= 255
bytes
sstr(p), 1 <= p <= 1333
string
strg *
string
tims
time
unit(p), 1 <= p <= 5
string
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

SAP Mass Ingestion connection source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP Mass Ingestion connection source and an Microsoft Azure Synapse Analytics target:
SAP Mass Ingestion connection Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
accp(6)
varchar(24)
char(1)
nchar null
char(p), 2 <= p <= 255
nchar(p), 2 <= p <= 255
clnt(1)
nchar null
clnt(p), 2 <= p <= 3
nchar(p), 2 <= p <= 3
cuky(1)
nchar null
cuky(p), 2 <= p <= 5
nchar(p), 2 <= p <= 5
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
float
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
float
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
float
int1
bigint
int2
bigint
int4
bigint
int8
bigint
lang(1)
nchar null
lchr *
varchar(max)
lraw *
varbinary(max)
numc(1)
nchar null
numc(p), 2 <= p <= 255
nchar(p), 2 <= p <= 255
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(1)
binary null
raw(p), 2 <= p <= 255
binary(p), 2 <= p <= 255
sstr(1)
nchar null
sstr(p), 2 <= p <= 1333
nchar(p), 2 <= p <= 1333
strg *
char null
tims
time(0)
unit(1)
nchar null
unit(p), 2 <= p <= 5
nchar(p), 2 <= p <= 5
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

SAP Mass Ingestion connection Source and Oracle Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP Mass Ingestion source and an Oracle target:
SAP Mass Ingestion Source Data Type
Oracle Target Data Type
accp(6)
varchar2(24 char)
char(p), 1 <= p <= 255
varchar2(s char), 4 <= s <= 1020
clnt(p), 1 <= p <= 3
varchar2(s char), 4 <= s <= 12
cuky(p), 1 <= p <= 5
varchar2(s char), 4 <= s <= 20
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
binary_double
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
binary_double
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
binary_double
int1
number(3)
int2
number(5)
int4
number(10)
int8
number(19)
lang(1)
varchar2(4 char)
lchr *
varchar2(1 char)
lraw *
blob null
numc(p), 1 <= p <= 255
varchar2(s char), 4 <= s <= 1020
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(p), 1 <= p <= 255
blob null
sstr(p), 1 <= p <= 1333
varchar2(s char), 4 <= s <= 4000
strg *
varchar2(1 char)
tims
timestamp(0)
unit(p), 1 <= p <= 5
varchar2(s char), 4 <= s <= 20
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

SAP Mass Ingestion connection Source and Snowflake Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP Mass Ingestion connection source and a Snowflake target:
SAP Mass Ingestion connection Source Data Type
Snowflake Target Data Type
accp(6)
varchar(24)
char(p), 1 <= p <= 255
varchar(p), 4 <= p <= 1020
clnt(p), 1 <= p <= 3
varchar(p), 4 <= p <= 12
cuky(p), 1 <= p <= 5
varchar(p), 4 <= p <= 20
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
float
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
float
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
float
int1
number(3)
int2
number(5)
int4
number(10)
int8
number(19)
lang(1)
varchar(4)
lchr *
varchar(4)
lraw *
binary(1)
numc(p), 1 <= p <= 255
varchar(p), 4 <= p <= 1020
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(p), 1 <= p <= 255
binary(p), 1 <= p <= 255
sstr(p), 1 <= p <= 1333
varchar(p), 4 <= p <= 5332
strg *
varchar(4)
tims
time(0)
unit(p), 1 <= p <= 5
varchar(p), 4 <= p <= 20
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

SAP ODP Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP ODP source and an Amazon Redshift target:
SAP ODP Source Data Type
Amazon Redshift Target Data Type
accp(6)
character varying(24)
char(p), 1 <= p <= 255
character varying(p), 4 <= p <= 1020
clnt(p), 1 <= p <= 3
character varying(p), 4 <= p <= 12
cuky(p), 1 <= p <= 5
character varying(p), 4 <= p <= 20
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
d16r
double precision
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
d34r
double precision
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
fltp
double precision
int1
smallint
int2
smallint
int4
integer
int8
bigint
lang(1)
character varying(4)
lchr *
character varying (65535)
lraw *
binary varying (1024000)
numc(p), 1 <= p <= 255
character varying(p), 4 <= p <= 1020
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
numeric(p,s), 1 <= p <= 38, 0 <= s <= 16
raw(p), 1 <= p <= 255
binary varying(p), 1 <= p <= 255
sstr(p), 1 <= p <= 1333
character varying(p), 4 <= p <= 5332
strg *
character varying (65535)
tims
time without time zone
unit(p), 1 <= p <= 5
character varying(p), 4 <= p <= 20
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Amazon Redshift target.

SAP ODP Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP ODP source and a Databricks target:
SAP ODP Source Data Type
Databricks Target Data Type
accp(6)
string
char(p), 1 <= p <= 255
string
clnt(p), 1 <= p <= 3
string
cuky(p), 1 <= p <= 5
string
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
double
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
double
dats
string
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
double
int1
integer
int2
integer
int4
integer
int8
long
lang(1)
string
lchr *
string
lraw *
binary
numc(p), 1 <= p <= 255
string
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(p), 1 <= p <= 255
binary
sstr(p), 1 <= p <= 1333
string
strg *
string
tims
string
unit(p), 1 <= p <= 5
string
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Databricks target.

SAP ODP Source and Google BigQuery Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP Mass Ingestion connection source and a Google BigQuery target:
SAP Mass Ingestion connection Source Data Type
Google BigQuery Target Data Type
accp(6)
string
char(p), 1 <= p <= 255
string
clnt(p), 1 <= p <= 3
string
cuky(p), 1 <= p <= 5
string
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
d16r
float64
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
fltp
float64
int1
int64
int2
int64
int4
int64
int8
int64
lang(1)
string
lchr *
string
lraw *
string
numc(p), 1 <= p <= 255
string
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
bignumeric
raw(p), 1 <= p <= 255
bytes
sstr(p), 1 <= p <= 1333
string
strg *
string
tims
time
unit(p), 1 <= p <= 5
string
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Google BigQuery target.

SAP ODP Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP ODP source and a Microsoft Azure Synapse Analytics target:
SAP ODP Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
accp(6)
varchar(24)
char(p), 1 <= p <= 255
varchar(p), 4 <= p <= 1020
clnt(p), 1 <= p <= 3
varchar(p), 4 <= p <= 12
cuky(p), 1 <= p <= 5
varchar(p), 4 <= p <= 20
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
float
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
float
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
float
int1
tinyint
int2
smallint
int4
int
int8
bigint
lang(1)
varchar(4)
lchr *
varchar(max)
lraw *
varbinary(max)
numc(p), 1 <= p <= 255
varchar(p), 4 <= p <= 1020
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
decimal(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(1)
binary null
raw(p), 2 <= p <= 255
binary(p), 2 <= p <= 255
sstr(p), 1 <= p <= 1333
varchar(p), 4 <= p <= 5332
strg *
varchar null
tims
time(0)
unit(p), 1 <= p <= 5
varchar(p), 4 <= p <= 20
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Microsoft Azure Synapse Analytics target.

SAP ODP Source and Oracle Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP ODP source and an Oracle target:
SAP ODP Source Data Type
Oracle Target Data Type
accp(6)
varchar2(24 char)
char(p), 1 <= p <= 255
varchar2(s char), 4 <= s <= 1020
clnt(p), 1 <= p <= 3
varchar2(s char), 4 <= s <= 12
cuky(p), 1 <= p <= 5
varchar2(s char), 4 <= s <= 20
curr(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
binary_double
d34d(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
binary_double
dats
date
dec(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
binary_double
int1
number(3)
int2
number(5)
int4
number(10)
int8
number(19)
lang(1)
varchar2(4 char)
lchr *
varchar2(1 char)
lraw *
blob null
numc(p), 1 <= p <= 255
varchar2(s char), 4 <= s <= 1020
quan(p,s), 1 <= p <= 38, 0 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(p), 1 <= p <= 255
blob null
sstr(p), 1 <= p <= 1333
varchar2(s char), 4 <= s <= 4000
strg *
varchar2(1 char)
tims
timestamp(0)
unit(p), 1 <= p <= 5
varchar2(s char), 4 <= s <= 20
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure an Oracle target.

SAP ODP Source and Snowflake Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with an SAP ODP source and a Snowflake target:
SAP ODP Source Data Type
Snowflake Target Data Type
accp(6)
varchar(24)
char(p), 1 <= p <= 255
varchar(p), 4 <= p <= 1020
clnt(p), 1 <= p <= 3
varchar(p), 4 <= p <= 12
cuky(p), 1 <= p <= 5
varchar(p), 4 <= p <= 20
curr(p,0), 1 <= p <= 38
integer
curr(p,s), 1 <= p <= 38, 1 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16d(p,0), 1 <= p <= 38
integer
d16d(p,s), 1 <= p <= 38, 1 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d16r
float
d34d(p,0), 1 <= p <= 38
integer
d34d(p,s), 1 <= p <= 38, 1 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
d34r
float
dats
date
dec(p,0), 1 <= p <= 38
integer
dec(p,s), 1 <= p <= 38, 1 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
fltp
float
int1
number(3)
int2
number(5)
int4
number(10)
int8
number(19)
lang(1)
varchar(4)
lchr *
varchar(4)
lraw *
binary(1)
numc(p), 1 <= p <= 255
varchar(p), 4 <= p <= 1020
quan(p,0), 1 <= p <= 38
integer
quan(p,s), 1 <= p <= 38, 1 <= s <= 16
number(p,s), 1 <= p <= 38, 1 <= s <= 16
raw(p), 1 <= p <= 255
binary(p), 1 <= p <= 255
sstr(p), 1 <= p <= 1333
varchar(p), 4 <= p <= 5332
strg *
varchar(4)
tims
time(0)
unit(p), 1 <= p <= 5
varchar(p), 4 <= p <= 20
* SAP doesn't specify the maximum length for these data types.
Unsupported source data types
Application Ingestion and Replication does not support the following obsolete SAP data types:
Additionally, application ingestion and replication jobs do not support the rstr data type.
If necessary, you can create custom data-type mappings when you define an application ingestion and replication task. For more information, see "Data Type Rules" in Configure a Snowflake Cloud Data Warehouse target.

ServiceNow Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a ServiceNow source and an Amazon Redshift target:
ServiceNow Source Data Type
Amazon Redshift Target Data Type
audio
character varying(p), 4 <= p <= 16000
boolean
boolean
choice
character varying(p), 4 <= p <= 16000
color
character varying(p), 4 <= p <= 16000
compressed
character varying(p), 4 <= p <= 16000
condition_string
character varying(p), 4 <= p <= 16000
conditions
character varying(p), 4 <= p <= 16000
currency(p,s), 1 <= p <= 18, 0 <= s <= 2
numeric(p,s), 1 <= p <= 18, 0 <= s <= 2
currency2
character varying(p), 4 <= p <= 16000
decimal(p,s), 1 <= p <= 20, 0 <= s <= 2
numeric(p,s), 1 <= p <= 20, 0 <= s <= 2
document_id
character varying(p), 4 <= p <= 16000
domain_id
character varying(p), 4 <= p <= 16000
domain_path
character varying(p), 4 <= p <= 16000
due_date
timestamp without time zone
field_name
character varying(p), 4 <= p <= 16000
file_attachment
character varying(p), 4 <= p <= 16000
float(p,s), 1 <= p <= 19, 0 <= s <= 7
numeric(p,s), 1 <= p <= 20, 0 <= s <= 7
glide_date
date
glide_date_time
timestamp without time zone
glide_duration
timestamp without time zone
glide_encrypted
character varying(p), 4 <= p <= 16000
glide_list
character varying(p), 4 <= p <= 16000
glide_time
timestamp without time zone
guid
character varying(p), 4 <= p <= 16000
html
character varying(p), 4 <= p <= 16000
icon
character varying(p), 4 <= p <= 16000
image
character varying(p), 4 <= p <= 16000
integer
integer
ip_addr
character varying(p), 4 <= p <= 16000
journal
character varying(p), 4 <= p <= 16000
journal_input
character varying(p), 4 <= p <= 16000
journal_list
character varying(p), 4 <= p <= 16000
longint
bigint
password
character varying(p), 4 <= p <= 16000
password2
character varying(p), 4 <= p <= 16000
percent_complete(p,s), 1 <= p <= 16, 0 <= s <= 2
numeric(p,s), 1 <= p <= 16, 0 <= s <= 2
phone_number_e164
character varying(p), 4 <= p <= 16000
price(p,s), 1 <= p <= 18, 0 <= s <= 2
numeric(p,s), 1 <= p <= 18, 0 <= s <= 2
reference
character varying(p), 4 <= p <= 16000
script
character varying(p), 4 <= p <= 16000
script_plain
character varying(p), 4 <= p <= 16000
simple_name_values
character varying(p), 4 <= p <= 16000
string
character varying(p), 4 <= p <= 16000
string_full_utf8
character varying(p), 4 <= p <= 16000
sys_class_name
character varying(p), 4 <= p <= 16000
sys_class_path
character varying(p), 4 <= p <= 16000
table_name
character varying(p), 4 <= p <= 16000
translated_field
character varying(p), 4 <= p <= 16000
translated_html
character varying(p), 4 <= p <= 16000
translated_text
character varying(p), 4 <= p <= 16000
url
character varying(p), 4 <= p <= 16000
user_image
character varying(p), 4 <= p <= 16000
user_roles
character varying(p), 4 <= p <= 16000
video
character varying(p), 4 <= p <= 16000
wiki_text
character varying(p), 4 <= p <= 16000
workflow
character varying(p), 4 <= p <= 16000

ServiceNow Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a ServiceNow source and a Databricks target:
ServiceNow Source Data Type
Databricks Target Data Type
audio
string
boolean
boolean
choice
string
color
string
compressed
string
condition_string
string
conditions
string
currency(p,s), 1 <= p <= 18, 0 <= s <= 2
decimal(p,s), 1 <= p <= 18, 1 <= s <= 2
currency2
string
decimal(p,s), 1 <= p <= 20, 0 <= s <= 2
decimal(p,s), 1 <= p <= 20, 1 <= s <= 2
document_id
string
domain_id
string
domain_path
string
due_date
timestamp
field_name
string
file_attachment
string
float(p,s), 1 <= p <= 19, 0 <= s <= 7
decimal(p,s), 1 <= p <= 19, 1 <= s <= 7
glide_date
string
glide_date_time
timestamp
glide_duration
timestamp
glide_encrypted
string
glide_list
string
glide_time
timestamp
guid
string
html
string
icon
string
image
string
integer
integer
ip_addr
string
journal
string
journal_input
string
journal_list
string
longint
long
password
string
password2
string
percent_complete(p,s), 1 <= p <= 16, 0 <= s <= 2
decimal(p,s), 1 <= p <= 16, 1 <= s <= 2
phone_number_e164
string
price(p,s), 1 <= p <= 18, 0 <= s <= 2
decimal(p,s), 1 <= p <= 18, 1 <= s <= 2
reference
string
script
string
script_plain
string
simple_name_values
string
string
string
string_full_utf8
string
sys_class_name
string
sys_class_path
string
table_name
string
translated_field
string
translated_html
string
translated_text
string
url
string
user_image
string
user_roles
string
video
string
wiki_text
string
workflow
string

ServiceNow Source and Google BigQuery Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a ServiceNow source and a Google BigQuery target:
ServiceNow Source Data Type
Google BigQuery Target Data Type
audio
string
boolean
bool
choice
string
color
string
compressed
string
condition_string
string
conditions
string
currency(p,s), 1 <= p <= 18, 0 <= s <= 2
bignumeric
currency2
string
decimal(p,s), 1 <= p <= 20, 0 <= s <= 2
bignumeric
document_id
string
domain_id
string
domain_path
string
due_date
datetime
field_name
string
file_attachment
string
float(p,s), 1 <= p <= 19, 0 <= s <= 7
bignumeric
glide_date
date
glide_date_time
datetime
glide_duration
datetime
glide_encrypted
string
glide_list
string
glide_time
datetime
guid
string
html
string
icon
string
image
string
integer
int64
ip_addr
string
journal
string
journal_input
string
journal_list
string
longint
int64
password
string
password2
string
percent_complete(p,s), 1 <= p <= 16, 0 <= s <= 2
bignumeric
phone_number_e164
string
price(p,s), 1 <= p <= 18, 0 <= s <= 2
bignumeric
reference
string
script
string
script_plain
string
simple_name_values
string
string
string
string_full_utf8
string
sys_class_name
string
sys_class_path
string
table_name
string
translated_field
string
translated_html
string
translated_text
string
url
string
user_image
string
user_roles
string
video
string
wiki_text
string
workflow
string

ServiceNow Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a ServiceNow source and a Microsoft Azure Synapse Analytics target:
ServiceNow Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
audio
varchar(p), 4 <= p <= max
boolean
bit
choice
varchar(p), 4 <= p <= max
color
varchar(p), 4 <= p <= max
compressed
varchar(p), 4 <= p <= max
condition_string
varchar(p), 4 <= p <= max
conditions
varchar(p), 4 <= p <= max
currency(p,s), 1 <= p <= 18, 0 <= s <= 2
decimal(p,s), 1 <= p <= 18, 1 <= s <= 2
currency2
varchar(p), 4 <= p <= max
decimal(p,s), 1 <= p <= 20, 0 <= s <= 2
decimal(p,s), 1 <= p <= 20, 1 <= s <= 2
document_id
varchar(p), 4 <= p <= max
domain_id
varchar(p), 4 <= p <= max
domain_path
varchar(p), 4 <= p <= max
due_date
datetime
field_name
varchar(p), 4 <= p <= max
file_attachment
varchar(p), 4 <= p <= max
float(p,s), 1 <= p <= 19, 0 <= s <= 7
decimal(p,s), 1 <= p <= 19, 1 <= s <= 7
glide_date
date
glide_date_time
datetime
glide_duration
datetime
glide_encrypted
varchar(p), 4 <= p <= max
glide_list
varchar(p), 4 <= p <= max
glide_time
datetime
guid
varchar(p), 4 <= p <= max
html
varchar(p), 4 <= p <= max
icon
varchar(p), 4 <= p <= max
image
varchar(p), 4 <= p <= max
integer
int
ip_addr
varchar(p), 4 <= p <= max
journal
varchar(p), 4 <= p <= max
journal_input
varchar(p), 4 <= p <= max
journal_list
varchar(p), 4 <= p <= max
longint
bigint
password
varchar(p), 4 <= p <= max
password2
varchar(p), 4 <= p <= max
percent_complete(p,s), 1 <= p <= 16, 0 <= s <= 2
decimal(p,s), 1 <= p <= 16, 1 <= s <= 2
phone_number_e164
varchar(p), 4 <= p <= max
price(p,s), 1 <= p <= 18, 0 <= s <= 2
decimal(p,s), 1 <= p <= 18, 1 <= s <= 2
reference
varchar(p), 4 <= p <= max
script
varchar(p), 4 <= p <= max
script_plain
varchar(p), 4 <= p <= max
simple_name_values
varchar(p), 4 <= p <= max
string
varchar(p), 4 <= p <= max
string_full_utf8
varchar(p), 4 <= p <= max
sys_class_name
varchar(p), 4 <= p <= max
sys_class_path
varchar(p), 4 <= p <= max
table_name
varchar(p), 4 <= p <= max
translated_field
varchar(p), 4 <= p <= max
translated_html
varchar(p), 4 <= p <= max
translated_text
varchar(p), 4 <= p <= max
url
varchar(p), 4 <= p <= max
user_image
varchar(p), 4 <= p <= max
user_roles
varchar(p), 4 <= p <= max
video
varchar(p), 4 <= p <= max
wiki_text
varchar(p), 4 <= p <= max
workflow
varchar(p), 4 <= p <= max

ServiceNow Source and Oracle Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a ServiceNow source and an Oracle target:
ServiceNow Source Data Type
Oracle Target Data Type
udio
char(s char), 4 <= s <= 2000
audio
clob
boolean
char(1 char)
choice
char(s char), 4 <= s <= 2000
choice
clob
color
char(s char), 4 <= s <= 2000
color
clob
compressed
char(s char), 4 <= s <= 2000
compressed
clob
condition_string
char(s char), 4 <= s <= 2000
condition_string
clob
conditions
char(s char), 4 <= s <= 2000
conditions
clob
currency(p,s), 1 <= p <= 18, 0 <= s <= 2
number(p,s), 1 <= p <= 18, 1 <= s <= 2
currency2
char(s char), 4 <= s <= 2000
currency2
clob
decimal(p,s), 1 <= p <= 20, 0 <= s <= 2
number(p,s), 1 <= p <= 20, 1 <= s <= 2
document_id
char(s char), 4 <= s <= 2000
document_id
clob
domain_id
char(s char), 4 <= s <= 2000
domain_id
clob
domain_path
char(s char), 4 <= s <= 2000
domain_path
clob
due_date
date
field_name
char(s char), 4 <= s <= 2000
field_name
clob
file_attachment
char(s char), 4 <= s <= 2000
file_attachment
clob
float(p,s), 1 <= p <= 19, 0 <= s <= 7
number(p,s), 1 <= p <= 19, 1 <= s <= 7
glide_date
date
glide_date_time
date
glide_duration
date
glide_encrypted
char(s char), 4 <= s <= 2000
glide_encrypted
clob
glide_list
char(s char), 4 <= s <= 2000
glide_list
clob
glide_time
date
guid
char(s char), 4 <= s <= 2000
guid
clob
html
char(s char), 4 <= s <= 2000
html
clob
icon
char(s char), 4 <= s <= 2000
icon
clob
image
char(s char), 4 <= s <= 2000
image
clob
integer
number(10)
ip_addr
char(s char), 4 <= s <= 2000
ip_addr
clob
journal
char(s char), 4 <= s <= 2000
journal
clob
journal_input
char(s char), 4 <= s <= 2000
journal_input
clob
journal_list
char(s char), 4 <= s <= 2000
journal_list
clob
longint
number(19)
password
char(s char), 4 <= s <= 2000
password
clob
password2
char(s char), 4 <= s <= 2000
password2
clob
percent_complete(p,s), 1 <= p <= 16, 0 <= s <= 2
number(p,s), 1 <= p <= 16, 1 <= s <= 2
phone_number_e164
char(s char), 4 <= s <= 2000
phone_number_e164
clob
price(p,s), 1 <= p <= 18, 0 <= s <= 2
number(p,s), 1 <= p <= 18, 1 <= s <= 2
reference
char(s char), 4 <= s <= 2000
reference
clob
script
char(s char), 4 <= s <= 2000
script
clob
script_plain
char(s char), 4 <= s <= 2000
script_plain
clob
simple_name_values
char(s char), 4 <= s <= 2000
simple_name_values
clob
string
char(s char), 4 <= s <= 2000
string
clob
string_full_utf8
char(s char), 4 <= s <= 2000
string_full_utf8
clob
sys_class_name
char(s char), 4 <= s <= 2000
sys_class_name
clob
sys_class_path
char(s char), 4 <= s <= 2000
sys_class_path
clob
table_name
char(s char), 4 <= s <= 2000
table_name
clob
translated_field
char(s char), 4 <= s <= 2000
translated_field
clob
translated_html
char(s char), 4 <= s <= 2000
translated_html
clob
translated_text
char(s char), 4 <= s <= 2000
translated_text
clob
url
char(s char), 4 <= s <= 2000
url
clob
user_image
char(s char), 4 <= s <= 2000
user_image
clob
user_roles
char(s char), 4 <= s <= 2000
user_roles
clob
video
char(s char), 4 <= s <= 2000
video
clob
wiki_text
char(s char), 4 <= s <= 2000
wiki_text
clob
workflow
char(s char), 4 <= s <= 2000
workflow
clob

ServiceNow Source and Snowflake Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a ServiceNow source and a Snowflake target:
ServiceNow Source Data Type
Snowflake Target Data Type
audio
char(p), 4 <= p <= 16000
boolean
boolean
choice
char(p), 4 <= p <= 16000
color
char(p), 4 <= p <= 16000
compressed
char(p), 4 <= p <= 16000
condition_string
char(p), 4 <= p <= 16000
conditions
char(p), 4 <= p <= 16000
currency(p,0), 1 <= p <= 18
integer
currency(p,s), 1 <= p <= 18, 1 <= s <= 2
number(p,s), 1 <= p <= 18, 1 <= s <= 2
currency2
char(p), 4 <= p <= 16000
decimal(p,0), 1 <= p <= 20
integer
decimal(p,s), 1 <= p <= 20, 1 <= s <= 2
number(p,s), 1 <= p <= 20, 1 <= s <= 2
document_id
char(p), 4 <= p <= 16000
domain_id
char(p), 4 <= p <= 16000
domain_path
char(p), 4 <= p <= 16000
due_date
datetime(0)
field_name
char(p), 4 <= p <= 16000
file_attachment
char(p), 4 <= p <= 16000
float(p,0), 1 <= p <= 19
integer
float(p,s), 1 <= p <= 19, 1 <= s <= 7
number(p,s), 1 <= p <= 19, 1 <= s <= 7
glide_date
date
glide_date_time
datetime(0)
glide_duration
datetime(0)
glide_encrypted
char(p), 4 <= p <= 16000
glide_list
char(p), 4 <= p <= 16000
glide_time
datetime(0)
guid
char(p), 4 <= p <= 16000
html
char(p), 4 <= p <= 16000
icon
char(p), 4 <= p <= 16000
image
char(p), 4 <= p <= 16000
integer
number(10)
ip_addr
char(p), 4 <= p <= 16000
journal
char(p), 4 <= p <= 16000
journal_input
char(p), 4 <= p <= 16000
journal_list
char(p), 4 <= p <= 16000
longint
number(19)
password
char(p), 4 <= p <= 16000
password2
char(p), 4 <= p <= 16000
percent_complete(p,0), 1 <= p <= 16
integer
percent_complete(p,s), 1 <= p <= 16, 1 <= s <= 2
number(p,s), 1 <= p <= 16, 1 <= s <= 2
phone_number_e164
char(p), 4 <= p <= 16000
price(p,0), 1 <= p <= 18
integer
price(p,s), 1 <= p <= 18, 1 <= s <= 2
number(p,s), 1 <= p <= 18, 1 <= s <= 2
reference
char(p), 4 <= p <= 16000
script
char(p), 4 <= p <= 16000
script_plain
char(p), 4 <= p <= 16000
simple_name_values
char(p), 4 <= p <= 16000
string
char(p), 4 <= p <= 16000
string_full_utf8
char(p), 4 <= p <= 16000
sys_class_name
char(p), 4 <= p <= 16000
sys_class_path
char(p), 4 <= p <= 16000
table_name
char(p), 4 <= p <= 16000
translated_field
char(p), 4 <= p <= 16000
translated_html
char(p), 4 <= p <= 16000
translated_text
char(p), 4 <= p <= 16000
url
char(p), 4 <= p <= 16000
user_image
char(p), 4 <= p <= 16000
user_roles
char(p), 4 <= p <= 16000
video
char(p), 4 <= p <= 16000
wiki_text
char(p), 4 <= p <= 16000
workflow
char(p), 4 <= p <= 16000

Workday Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Workday source and an Amazon Redshift target:
Workday Source Data Type
Amazon Redshift Target Data Type
json
super
string
character varying(p), 4 <= p <= 4000
xml
character varying(65535)
xsd
numeric(p,s), 1 <= p <= 38, 0 <= s <= 37
xsd:boolean
boolean
xsd:date
date
xsd:datetime
timestamp with time zone
xsd:string
character varying(p), 4 <= p <= 4000

Workday Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Workday source and a Databricks target:
Workday Source Data Type
Databricks Target Data Type
json
string
string
string
xml
string
xsd
decimal(p,s), 1 <= p <= 38, 0 <= s <= 37
xsd:boolean
boolean
xsd:date
string
xsd:datetime
timestamp
xsd:string
string

Workday Source and Google BigQuery Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Workday source and a Google BigQuery target:
Workday Source Data Type
Google BigQuery Target Data Type
json
string
string
string
xml
string
xsd
bignumeric
xsd:boolean
bool
xsd:date
date
xsd:datetime
timestamp
xsd:string
string

Workday Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Workday source and a Microsoft Azure Synapse Analytics target:
Workday Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
json
nvarchar(max)
string
nchar(p), 1 <= p <= 1000
xml
nvarchar(max)
xsd
decimal(p,s), 1 <= p <= 38, 0 <= s <= 37
xsd:boolean
bit
xsd:date
date
xsd:datetime
datetimeoffset(3)
xsd:string
nchar(p), 1 <= p <= 1000

Workday Source and Oracle Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Workday source and an Oracle target:
Workday Source Data Type
Oracle Target Data Type
json
clob
string
char(s char), 4 <= s <= 2000
xml
clob
xsd
number(p,s), 1 <= p <= 38, 0 <= s <= 37
xsd:boolean
char(1 char)
xsd:date
date
xsd:datetime
timestamp(p) with time zone, 3 <= p <= null
xsd:string
char(s char), 4 <= s <= 2000

Workday Source and Snowflake Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Workday source and a Snowflake target:
Workday Source Data Type
Snowflake Target Data Type
json
variant
string
char(p), 4 <= p <= 4000
xml
variant
xsd
integer
xsd
number(38,s), 1 <= s <= 37
xsd
number(p,s), 1 <= p <= 37, 1 <= s <= 37
xsd:boolean
boolean
xsd:date
date
xsd:datetime
timestamp_tz(3)
xsd:string
char(p), 4 <= p <= 4000

Zendesk Source and Amazon Redshift Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Zendesk source and an Amazon Redshift target:
Zendesk Source Data Type
Amazon Redshift Target Data Type
array
character varying(65535)
boolean
boolean
datetime
timestamp without time zone
integer
bigint
json
character varying(65535)
object
character varying(65535)
string
character varying(40960)
string_long
character varying(65535)
string_short
character varying(4096)

Zendesk Source and Databricks Target

The following table identifies the recommended data type mappings for Application Ingestion and Replicationconfigurations with a Zendesk source and a Databricks target:
Zendesk Source Data Type
Databricks Target Data Type
array
string
boolean
boolean
datetime
timestamp
integer
long
json
string
object
string
string
string
string_long
string
string_short
string

Zendesk Source and Google BigQuery Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Zendesk source and a Google BigQuery target:
Zendesk Source Data Type
Google BigQuery Target Data Type
array
string
boolean
bool
datetime
datetime
integer
int64
json
string
object
string
string
string
string_long
string
string_short
string

Zendesk Source and Microsoft Azure Synapse Analytics Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Zendesk and a Microsoft Azure Synapse Analytics target:
Zendesk Source Data Type
Microsoft Azure Synapse Analytics Target Data Type
array
varchar(max)
boolean
bit
datetime
datetime
integer
bigint
json
nvarchar(max)
object
varchar(max)
string
varchar(max)
string_long
varchar(max)
string_short
varchar(4096)

Zendesk Source and Oracle Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Zendesk source and an Oracle target:
Zendesk Source Data Type
Oracle Target Data Type
array
clob
boolean
char(1 char)
datetime
timestamp(3)
integer
number(19)
json
clob
object
clob
string
clob
string_long
clob
string_short
char(2000 char)

Zendesk Source and Snowflake Target

The following table identifies the recommended data type mappings for Application Ingestion and Replication configurations with a Zendesk source and a Snowflake target:
Zendesk Source Data Type
Snowflake Target Data Type
array
char(16777216)
boolean
boolean
datetime
datetime(3)
integer
integer
json
variant
object
char(16777216)
string
char(40960)
string_long
char(4194304)
string_short
char(4096)